Хаим Шапира - Восемь этюдов о бесконечности. Математическое приключение

Здесь есть возможность читать онлайн «Хаим Шапира - Восемь этюдов о бесконечности. Математическое приключение» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2021, ISBN: 2021, Издательство: Литагент Аттикус, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Восемь этюдов о бесконечности. Математическое приключение: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Восемь этюдов о бесконечности. Математическое приключение»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Математические формулы – такое же чудо, как и гениальные произведения великих композиторов и писателей, утверждает автор нескольких бестселлеров, математик и философ Хаим Шапира. Всем, кто желает расширить свой кругозор, он предлагает познакомиться с математическими теориями, касающимися самой красивой из концепций, когда-либо созданных человечеством, – концепцией бесконечности. Эта концепция волновала многих выдающихся мыслителей, среди которых Зенон и Пифагор, Георг Кантор и Бертран Рассел, Софья Ковалевская и Эмми Нётер, аль-Хорезми и Евклид, Софи Жермен и Сриниваса Рамануджан. Поскольку мир бесконечности полон парадоксов, немало их и в этой книге: апории Зенона, гильбертовский отель «Бесконечность», парадокс Ахиллеса и богов, парадокс Рая и Ада, парадокс Росса – Литлвуда о теннисных мячах, парадокс Галилея и многие другие.
«Я расскажу читателю-неспециалисту просто и ясно о двух математических теориях, которые считаю самыми завораживающими, – теории чисел и теории множеств, и каждая из них имеет отношение к бесконечности. Вместе с этим я предложу стратегии математического мышления, позволяющие читателю испытать свои способности к решению поистине увлекательных математических задач». (Хаим Шапира)

Восемь этюдов о бесконечности. Математическое приключение — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Восемь этюдов о бесконечности. Математическое приключение», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

55

T – сокр. англ. true («истинный»), F – false («ложный»), U – undecidable («неразрешимый»).

56

Она же геометрия Лобачевского.

57

Она же геометрия Римана.

58

Седьмое положение (и заключительная фраза) «Логико-философского трактата» (Logisch-philosophische Abhandlung, 1921). Цит. по: Витгенштейн Л . Философские работы. Часть I / Пер. М. С. Козловой и Ю. А. Асеева. М.: Гнозис, 1994.

59

В русском переводе эта книга была издана московским издательством «Едиториал УРСС» в 2003 г.

60

World Fashion Channel – международный телеканал, вещающий о современных тенденциях в моде, красоте, путешествиях, технологиях и стиле жизни. – Примеч. ред.

61

До бесконечности ( лат .).

Комментарии

1

Для этого можно ввести в Google поисковый запрос «Elvis Presley Kevin Bacon». Элвис Пресли снимался в фильме «Смена привычки» (Change of Habit, 1969) с Эдвардом Аснером. Эдвард Аснер играл в фильме «Джон Ф. Кеннеди. Выстрелы в Далласе» (JFK, 1991), в котором снимался и Кевин Бейкон. Следовательно, у Аснера число Бейкона равно 1, а у Пресли (который никогда не играл в тех же фильмах, что и Бейкон) – 2.

2

Го – это абстрактная стратегическая настольная игра для двух игроков, задача которых – окружить большую территорию, чем противник. Эта игра требует стратегического и тактического мастерства и большой наблюдательности. Гомоку (которую называют также «гобан», или «пять в ряд») – тоже абстрактная стратегическая настольная игра, и в нее традиционно играют шашками («камнями») для го на доске для го размером 15 × 15 или 19 × 19 клеток. Однако задача участника этой игры – первым выстроить ряд из пяти шашек. В эту игру также можно играть с карандашом и бумагой.

3

Впервые я увидел эту задачу о восхождении монаха в книге Мартина Гарднера «Мои лучшие математические и логические головоломки» (My Best Mathematical and Logical Puzzles, 1994). Это чрезвычайно увлекательная маленькая книжка.

4

Многие математики с этим не согласятся. Они скажут, что мы говорим здесь о пределах сходимости и все зависит от того, с каким типом сходимости мы имеем дело. Читателям, не принадлежащим к числу математиков, может быть полезно найти в «Википедии» статью о концепции Supertask [ «суперзадачи» – соответствующей статьи на русском языке в «Википедии» пока что нет. – Примеч. перев. ]: это задача, требующая выполнения бесконечного числа операций за конечный временной промежуток. Мы еще встретимся с этой концепцией позднее, когда познакомимся с Зеноном, Ахиллесом и черепахой.

5

По иронии судьбы о жизни самого Диогена Лаэртского тоже почти ничего не известно; мы знаем только, что великий биограф жил «когда-то в третьем веке».

6

Цит. по «Истории западной философии» Бертрана Рассела.

7

Условие это очень сложно, так что я не буду подробно описывать его.

8

Кроме того, Сабит ибн Курра одним из первых распространил теорему Пифагора для прямоугольных треугольников на случай произвольного треугольника.

9

Слово «собственные» означает здесь, что в множество этих делителей не включается само делимое число.

10

Математик Харальд Бор был братом великого датского физика Нильса Бора. Кроме того, он играл в футбольной сборной Дании, завоевал в ее составе серебряную медаль Олимпийских игр 1908 г. Эта цитата позаимствована из его лекции «Оглядываясь назад» (Et tilbageblik // Mat. Tidsskr. A (1947). P. 1–27).

11

Фудзивара весьма известен в Японии своими популярными книгами по математике. Одна из этих книг посвящена красоте теорем, которые он делит на красивые и уродливые.

12

Первое число – 81. Второе… барабанная дробь! – 1458. Удалось ли вам его найти?

13

Ответ – 62. Каждое число последовательности равно сумме предыдущего числа и суммы цифр предыдущего числа. Например, после 16 идет 23, потому что 16 + (1 + 6) = 16 + 7 = 23. Следовательно, ответ задачи: 49 + 13 = 62.

14

Подсказка: Найдите наибольшую степень 2, на которую делится ваше число. Ее и следует взять в качестве P – 1.

15

Теорема о распределении простых чисел утверждает (более или менее) следующее: вероятность того, что число, близкое к n , окажется простым, пропорциональна натуральному логарифму n , деленному на n . Поскольку это отношение стремится к 0 при n , стремящемся к бесконечности, это гарантирует редкость появления простых чисел среди всех натуральных чисел.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Восемь этюдов о бесконечности. Математическое приключение»

Представляем Вашему вниманию похожие книги на «Восемь этюдов о бесконечности. Математическое приключение» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Восемь этюдов о бесконечности. Математическое приключение»

Обсуждение, отзывы о книге «Восемь этюдов о бесконечности. Математическое приключение» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x