Хаим Шапира - Восемь этюдов о бесконечности. Математическое приключение

Здесь есть возможность читать онлайн «Хаим Шапира - Восемь этюдов о бесконечности. Математическое приключение» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2021, ISBN: 2021, Издательство: Литагент Аттикус, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Восемь этюдов о бесконечности. Математическое приключение: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Восемь этюдов о бесконечности. Математическое приключение»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Математические формулы – такое же чудо, как и гениальные произведения великих композиторов и писателей, утверждает автор нескольких бестселлеров, математик и философ Хаим Шапира. Всем, кто желает расширить свой кругозор, он предлагает познакомиться с математическими теориями, касающимися самой красивой из концепций, когда-либо созданных человечеством, – концепцией бесконечности. Эта концепция волновала многих выдающихся мыслителей, среди которых Зенон и Пифагор, Георг Кантор и Бертран Рассел, Софья Ковалевская и Эмми Нётер, аль-Хорезми и Евклид, Софи Жермен и Сриниваса Рамануджан. Поскольку мир бесконечности полон парадоксов, немало их и в этой книге: апории Зенона, гильбертовский отель «Бесконечность», парадокс Ахиллеса и богов, парадокс Рая и Ада, парадокс Росса – Литлвуда о теннисных мячах, парадокс Галилея и многие другие.
«Я расскажу читателю-неспециалисту просто и ясно о двух математических теориях, которые считаю самыми завораживающими, – теории чисел и теории множеств, и каждая из них имеет отношение к бесконечности. Вместе с этим я предложу стратегии математического мышления, позволяющие читателю испытать свои способности к решению поистине увлекательных математических задач». (Хаим Шапира)

Восемь этюдов о бесконечности. Математическое приключение — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Восемь этюдов о бесконечности. Математическое приключение», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Бесконечные множества чисел, которые невозможно расположить в последовательном порядке, называются – что и неудивительно – несчетными. Множество всех точек на числовой прямой, заключенных между 0 и 1, несчетно, и его мощность не равна ℵ 0. Следовательно, для обозначения мощности множества всех вещественных чисел (или любого отрезка прямой вещественных чисел) нужен новый символ! В качестве такого символа используют букву ℵ [50] В русской математической литературе чаще используется малая готическая . – Примеч. ред . Говорят, что ℵ – мощность континуума. Однако следует отметить, что несчетные множества не всегда имеют мощность ℵ.

Слова, слова, слова

Поскольку концепция канторовой диагонали не только красива, но и важна, я объясню ее еще раз – теперь на примере доказательства, что множество всех слов бесконечной длины, составленных с использованием только двух букв (a и b), невозможно подсчитать. Другими словами, такое множество несчетно.

Если вы уже поняли объяснение, которое профессор Финкельштейн-Островский-Канторович дал Омеге относительно чисел в десятичной системе счисления, у вас не должно вызвать затруднений и следующее изложение. Речь идет в точности о том же самом, только на другом примере. Если вы не вполне поняли первое объяснение, я надеюсь, что вы поймете его на этот раз.

Доказательство будет строиться от противного, то есть мы предположим, что справедлива противоположная гипотеза: все такие слова можно расположить в некой последовательности. Затем мы увидим, что это предположение приводит к противоречию, что означает, что наша исходная гипотеза была ложной.

Вот расположение слов:

Применяя диагональный метод Кантора аналогично тому как мы действовали с - фото 102

Применяя диагональный метод Кантора, аналогично тому, как мы действовали с числами, заключенными между 0 и 1, образуем новое слово А0, которое не содержится где бы то ни было в представленном в таблице множестве, в каком бы порядке мы ни располагали слова. Внимательно посмотрите на таблицу и обратите внимание на подчеркнутые буквы, стоящие на диагонали. Новое слово А0 будет построено следующим образом: его первая буква будет отличной от первой буквы слова А1 (поскольку первая буква в А1 – а, мы возьмем букву b); вторая буква будет отличной от второй буквы слова А2 (раз это буква b, мы используем букву а); третья буква будет отличной от третьей буквы слова А3 (на этот раз возьмем букву b) – и так далее.

Итак, наше новое слово A0 = babbbbabb…

Я предоставлю умудренному читателю самостоятельно убедиться, что слово А0 никоим образом не может встретиться в исходном бесконечном списке (то есть совпасть с каким бы то ни было его словом), потому что оно не может не отличаться от любого слова A i по меньшей мере буквой, стоящей на i -м месте.

К тому же, как уже выяснила Омега, добавление слова А0 в список ничего не меняет, потому что мы всегда можем повторить ту же процедуру и построить еще одно слово, назовем его Aℵ, которое будет отличаться от всех без исключения слов, включенных в составленный нами бесконечный список. Итак, множество всех слов бесконечной длины, содержащих только буквы a и b, имеет мощность континуума.

Очевидно, множество всех слов бесконечной длины, составленных с использованием трех разных букв (а не только букв a и b) или четырех или пяти (или любого другого количества) разных букв, также должно иметь мощность несчетного множества, что само по себе не означает, что его мощность будет равна мощности континуума. Однако, поскольку мы можем построить между таким множеством и множеством чисел, составленных из 0 и 1, одно-однозначное и сюръективное отображение, мы видим, что его мощность действительно равна ℵ.

Еще одно (приятное) доказательство несчетности всех чисел на отрезке [0,1]

Предположим, что верна противоположная гипотеза: все точки отрезка [0,1] можно пересчитать. Из этого следует, что все эти точки можно расположить в некотором последовательном порядке – {p 1, p 2, p 3, p 4…}. Чтобы доказать (или опровергнуть) эту гипотезу, возьмем вокруг центральной точки p 1отрезок длиной, скажем, 1/10, вокруг точки p 2 – отрезок длиной 1/100, вокруг точки p 3 – отрезок длиной 1/1000 и так далее. Поскольку все точки, содержащиеся на отрезке [0,1], попадают по меньшей мере на один из этих отрезков (вспомним, что в множестве {p 1, p 2, p 3, p 4…} были перечислены все числа, расположенные между 0 и 1), мы получаем множество, покрывающее весь отрезок [0,1]. А также можно сложить длины всех этих отрезков. В соответствии с формулой для бесконечной геометрической прогрессии:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Восемь этюдов о бесконечности. Математическое приключение»

Представляем Вашему вниманию похожие книги на «Восемь этюдов о бесконечности. Математическое приключение» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Восемь этюдов о бесконечности. Математическое приключение»

Обсуждение, отзывы о книге «Восемь этюдов о бесконечности. Математическое приключение» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x