Если же предположить, что время состоит из мгновений и в любое конкретное мгновение стрела неподвижна, то придется заключить, что стрела никогда не находится в движении и, следовательно, – тут Зенон снова собирается поразить нас своими стрелами, приготовьтесь! – не сможет пролететь никакого расстояния.
Какое бы мгновение мы ни выбрали, стрела находится в нем в покое. Как же из этих состояний покоя может составиться движение? Если в каждое мгновение стрела пролетает расстояние, равное нулю, как же эти нули складываются в положительное число, что «позволяет» стреле лететь?
Всё совсем не просто!
Эта апория до сих пор не имеет решения – то есть такого решения, с которым были бы согласны все члены сообществ физиков и математиков.
Грациозная походка Галь Гадот
Рассмотрим другой вариант этой апории. Представим себе, что по бульвару Ротшильда в Тель-Авиве идет чудо-женщина Галь Гадот. Никого ни в малейшей степени не удивит, если я скажу, что за красавицей следует огромная толпа людей, фотографирующих ее со всех возможных ракурсов. Инстаграм внезапно оказывается полон сотнями ее фотографий, и на каждой из них эта прелестная женщина находится в некотором статическом положении, то есть в состоянии покоя. Такова природа фотографии: она захватывает конкретное мгновение и сохраняет его навечно. Если в кадре что-нибудь движется, лучше поменять старый фотоаппарат на модель поновее или почитать в инструкции, как установить более короткую выдержку. Поскольку Галь можно фотографировать каждое мгновение, из этого следует, что в течение всей своей прогулки по бульвару она остается в состоянии покоя. Приходится спросить: «Если она все время находится в покое, когда же она идет? Как из всех этих состояний покоя получается движение?» То есть мы снова приходим к тому же самому вопросу. И ответ на него снова не вполне ясен.
Занимаемся апориями Зенона
ВОСПОМИНАНИЯ ИЗ ДЕТСТВА – ЗЕНОН НА УРОКЕ ГЕОМЕТРИИ (ДОПОСТСОКРАТИЧЕСКИЙ ДИАЛОГ)
Учительница Зилия. Как вы помните, дети, через любые две точки проходит только одна прямая.
Зенон. Ни через какие две точки не проходит никакая прямая, потому что перемещение из одной точки в другую невозможно. Я уже несколько раз это объяснял. Кроме того, я не понимаю, почему вы отвергаете мое блестящее решение задачи о корабле, отплывающем из Мегары в Афины: несмотря на небольшое расстояние, корабль этот дойдет до места назначения через бесконечное время. То есть не дойдет. Вы просто не способны мыслить вне рамок стандартной учебной программы.
Зилия. Зенон, ты постоянно споришь о самых простых и очевидных вещах и всюду вносишь ненужные усложнения.
Зенон. Не бывает ничего простого и ясного.
Зилия. О чем ты говоришь на этот раз?
Зенон. На прошлом уроке вы учили нас, что прямая состоит из бесконечного множества точек, так?
Зилия. Именно так.
Зенон. А еще вы сказали, что длина точки равна нулю, не правда ли?
Зилия. Разумеется. Потому что, если бы она была какой-нибудь другой, то точку можно было бы разделить на части, что противоречит нашей основополагающей предпосылке. Если бы у точки была длина, она была бы не точкой, а отрезком прямой. Кроме того, у точки не может быть никакой длины, потому что между любыми двумя точками всегда есть еще одна точка – на самом деле даже несколько дополнительных точек. Если бы точка имела длину большую нуля, а расстояние между двумя точками было меньше этой длины, то первую точку было бы невозможно разместить между двумя другими. А это полностью противоречит всей фундаментальной логике геометрии.
Зенон. Хорошо. Напрасно вы так старались. Я согласен с вами, что длина точки равна нулю. Но теперь я хочу задать один маленький вопрос: как отрезок длиной, скажем, 17 см может состоять из точек нулевой длины? Мы выучили еще в первом классе, что сумма любого количества нулей всегда равна нулю. Повторю свой вопрос: как множество точек, имеющих нулевую длину, может образовывать отрезок длиной 17 см? Жду разъяснений и ответов.
Зилия. Мне нужно будет немного подумать. Я отвечу тебе на следующем уроке.
Зенон. Не спешите, я подожду. Вот еще одна похожая задача, которая может помочь вам в поисках ответа. Квадрат состоит из бесконечного количества линий, каждая из которых имеет нулевую площадь. Как может быть, что этим линиям удается заполнить квадрат, имеющий положительную площадь? Может быть, вам следует пойти обсудить этот вопрос с Зилотисом, учителем физики. Спросите его на языке, который он понимает: «Как может быть, что стрела, пролетающая за время t = 0 расстояние s = 0, может перемещаться из одного места в другое? Разве неверно, что в любой произвольный момент она преодолевает расстояние, равное нулю? Можно сфотографировать стрелу – да, я знаю, что фотография еще не изобретена, – и увидеть, что в любой конкретный момент она находится в состоянии покоя. Возможно, время не состоит из моментов? Возможно, если взять достаточное количество нулей, их сумма может не быть равной нулю?» Ну ладно, я пойду проверять свою теорию при помощи пращи.
Читать дальше
Конец ознакомительного отрывка
Купить книгу