Хаим Шапира - Восемь этюдов о бесконечности. Математическое приключение

Здесь есть возможность читать онлайн «Хаим Шапира - Восемь этюдов о бесконечности. Математическое приключение» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2021, ISBN: 2021, Издательство: Литагент Аттикус, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Восемь этюдов о бесконечности. Математическое приключение: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Восемь этюдов о бесконечности. Математическое приключение»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Математические формулы – такое же чудо, как и гениальные произведения великих композиторов и писателей, утверждает автор нескольких бестселлеров, математик и философ Хаим Шапира. Всем, кто желает расширить свой кругозор, он предлагает познакомиться с математическими теориями, касающимися самой красивой из концепций, когда-либо созданных человечеством, – концепцией бесконечности. Эта концепция волновала многих выдающихся мыслителей, среди которых Зенон и Пифагор, Георг Кантор и Бертран Рассел, Софья Ковалевская и Эмми Нётер, аль-Хорезми и Евклид, Софи Жермен и Сриниваса Рамануджан. Поскольку мир бесконечности полон парадоксов, немало их и в этой книге: апории Зенона, гильбертовский отель «Бесконечность», парадокс Ахиллеса и богов, парадокс Рая и Ада, парадокс Росса – Литлвуда о теннисных мячах, парадокс Галилея и многие другие.
«Я расскажу читателю-неспециалисту просто и ясно о двух математических теориях, которые считаю самыми завораживающими, – теории чисел и теории множеств, и каждая из них имеет отношение к бесконечности. Вместе с этим я предложу стратегии математического мышления, позволяющие читателю испытать свои способности к решению поистине увлекательных математических задач». (Хаим Шапира)

Восемь этюдов о бесконечности. Математическое приключение — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Восемь этюдов о бесконечности. Математическое приключение», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Хотя я и не верю в чтение – ибо это еще одна распространенная иллюзия чувственного мира, – некогда я тем не менее прочитал несколько строк, которые содержат почти разумное утверждение:

Время не проходит –
проходим мы. Да, мы.
Мы не тратим времени –
время тратит нас.

А раз уж мы заговорили о книгах, вот человек, который написал немало книг, а прочел их еще больше, чем написал, и дает моей благородной точке зрения блестящее обоснование.

Это Бертран Рассел, английский философ и математик (да, я понимаю, что он будет жить через две тысячи лет после того, как время окончательно потратит меня, и все же…).

Рассел считается одним из величайших мыслителей XX столетия, и у него был свой вариант моей знаменитой апории об Ахиллесе и черепахе (к слову сказать, время потратило и Рассела). Рассел изложил свою вариацию моей апории в статье «Математика и метафизики» [33] Mathematics and the Metaphysicians // Mysticism and Logic, and Other Essays. N.Y.: Longmans, Green and Co., 1918. , в которой он также удостоил меня звания «отца философии бесконечности» – каковое звание я, разумеется, нахожу весьма впечатляющим, несмотря на свою привычку сомневаться во всем, в том числе и в собственной способности сомневаться.

Кое-кто утверждает, что версия Рассела более замысловата, чем моя, и ее не так легко опровергнуть. Мне не кажется, что сравнивать эти версии честно – Рассел придумал свою, стоя на моих плечах. Когда ребенок стоит на отцовских плечах, он не становится выше отца. Зато мне кажется, что опровергнуть ее не просто нелегко, а невозможно (как, впрочем, и мою).

Вот что говорит Рассел: «Допустим, черепаха начинает забег с некоторого положения, находящегося перед Ахиллесом. В любой момент черепаха оказывается в некой определенной точке, и Ахиллес оказывается в некой определенной точке, причем ни один из них не бывает в одной и той же точке дважды на протяжении всего забега. Черепаха побывает в таком же количестве точек, что и Ахиллес, потому что оба они в каждый конкретный момент находятся в неких конкретных точках, а в другой момент – в других точках. Однако, поскольку черепаха начинает забег с форой, для того, чтобы Ахиллес обогнал черепаху, необходимо выполнение следующего условия: те точки, в которых побывает черепаха, должны составлять лишь часть тех точек, в которых побывает Ахиллес».

А теперь сосредоточьтесь и слушайте внимательно. Версию Рассела можно опровергнуть, только если отказаться от аксиомы, которая утверждает, что часть всегда меньше целого: Ахиллес побывал лишь в некоторых из точек, в которых побывала черепаха. Готовы ли вы отбросить эту аксиому? Рассел отмечает, что всякий, кто верит в ее истинность, должен согласиться, что Ахиллес, даже если он бежит в десять, в тысячу, да хоть бы и в миллион раз быстрее черепахи, никогда ее не догонит, если у черепахи была фора в метр или в сантиметр или в миллиметр.

Что же тут такое происходит? Вы следите за моими рассуждениями? Я могу показать вам, что на пути, который проходят оба бегуна – и черепаха, и Ахиллес, – существует бесконечное множество точек. Может быть, когда мы говорим о бесконечном, привычные нам правила перестают действовать?

Кстати говоря, если вы помните мою первую апорию, все эти рассуждения вообще не имеют смысла. Ахиллес и черепаха не могут даже начать свой забег: движение-то невозможно. Я позволяю вам делать столь странные предположения только из вежливости. Ха! Они даже не смогут уйти со старта! Да и вам не удастся даже выстрелить из стартового пистолета. Чтобы нажать на спусковой крючок, ваш палец должен сначала преодолеть половину расстояния, затем половину оставшегося, затем… ну, вы помните это рассуждение.

Как-то раз я опоздал на встречу со своим великим учителем и наставником Парменидом. Я объяснил ему, что опоздал, потому что по пути к месту нашей встречи в таверне «Елена Прекрасная» мне нужно было преодолеть бесконечное число половинных расстояний. Нас обоих поразил тот факт, что я вообще сумел туда добраться и мы смогли вести эту беседу.

По правде говоря, не знаю, зачем я вообще пытаюсь обосновать перед вами свои рассуждения. Как сказал однажды китайский философ Лао-цзы, «Тот, кто мудр, не спорит; тот, кто спорит, не мудр» [34] «Дао дэ цзин», гл. 81. . Я мудр, так что пойду-ка я отсюда (если смогу).

Апория № 3. Полет стрелы – покой и движение

В третьей апории Зенон «доказывает», что, поскольку мгновение невозможно разделить на части, стрела, выпущенная из лука, находится в каждое мгновение в состоянии покоя (так как, если бы в любое произвольное мгновение стрела находилась в движении, причиной этого было бы то, что мгновение можно разделить на части).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Восемь этюдов о бесконечности. Математическое приключение»

Представляем Вашему вниманию похожие книги на «Восемь этюдов о бесконечности. Математическое приключение» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Восемь этюдов о бесконечности. Математическое приключение»

Обсуждение, отзывы о книге «Восемь этюдов о бесконечности. Математическое приключение» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x