Gustavo Pineiro - У интуиции есть своя логика. Гёдель. Теоремы о неполноте.

Здесь есть возможность читать онлайн «Gustavo Pineiro - У интуиции есть своя логика. Гёдель. Теоремы о неполноте.» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М.:, Год выпуска: 2015, Издательство: ООО «Де Агостини»,, Жанр: Математика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

У интуиции есть своя логика. Гёдель. Теоремы о неполноте.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «У интуиции есть своя логика. Гёдель. Теоремы о неполноте.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств. Так же как и его друг Альберт Эйнштейн, он оспаривал догмы современной науки, и точно так же в его жизни присутствовали война и изгнание.

У интуиции есть своя логика. Гёдель. Теоремы о неполноте. — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «У интуиции есть своя логика. Гёдель. Теоремы о неполноте.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Коэн внес значительный вклад в различные области математики, такие как теория чисел, математический анализ и логика. В1966 году на Международном математическом конгрессе в Москве он получил Филдсовскую премию — самую престижную математическую награду — за работу над континуум-гипотезой. Пол Коэн скончался в Калифорнии в марте 2007 года.

Кантор безуспешно пытался доказать ее в течение многих лет К 1900 году решения - фото 56

Кантор безуспешно пытался доказать ее в течение многих лет. К 1900 году решения все еще не было, и Гильберт поставил эту гипотезу на первое место в списке проблем в своем знаменитом докладе на конгрессе в Париже.

Решение проблемы в том виде, в каком мы знаем его сейчас, было получено в два этапа. Первый был завершен Гёделем в конце 1930-х годов. В 1938 и 1940 годах Гёдель опубликовал две статьи, где вкратце изложил различные аспекты первой части решения, которое детально изложено в курсе, прочитанном в Институте перспективных исследований. Конспекты курса были изданы в форме книги в 1940 году.

Вторую часть решения получил в 1963 году Пол Коэн — американский математик, который также работал в Институте перспективных исследований. Говорят, Коэн первым показал свое решение Гёделю, но когда он пришел к знаменитому коллеге, тот как раз переживал пик маниакально-депрессивного кризиса и не захотел впускать гостя, поэтому ему пришлось просовывать бумаги под дверь. Через несколько дней Гёдель позвонил коллеге и пригласил выпить чаю, из чего Коэн сделал вывод, что его решение верно. И действительно, за эту работу ученый в итоге получил Филдсовскую премию — для математиков она эквивалентна Нобелевской.

РЕШЕНИЕ ГЁДЕЛЯ И КОЭНА

Верна ли континуум-гипотеза? Это до сих пор неизвестно, поскольку ответ, найденный Гёделем и Коэном, состоит в том, что ни подтвердить континуум-гипотезу, ни опровергнуть ее невозможно на основе аксиом теории множеств. Если обозначить СН высказывание, в котором говорится, что "не существует множества с кардинальным числом, промежуточным между N и R", то СН для теории множеств — это идеальный пример первой теоремы Гёделя о неполноте: ни оно, ни его отрицание недоказуемы.

Как Гёдель и Коэн доказали это? Обозначим • абстрактную числовую операцию и предположим, что она удовлетворяет двум аксиомам:

— аксиома 1: операция коммутативна, то есть a • b = b • а;

— аксиома 2: у операции есть нейтральный элемент, то есть такой, что при операции с ним не происходит никаких изменений (если этот нейтральный элемент назвать е, то а • е = а).

Моделью назовем любой конкретный пример, любую специфическую операцию, выполняющую эти аксиомы. Например, сумма целых чисел — это модель, поскольку сумма коммутативна и имеет нейтральный элемент (то есть 0). Произведение целых чисел — также модель, поскольку эта операция также коммутативна и имеет нейтральный элемент (то есть 1). Вычитание целых чисел, наоборот, не является моделью, поскольку оно некоммутативно (например, 2 - 3 — не то же самое, что 3-2).

На основе этих аксиом можно синтаксически (согласно терминологии из предыдущей главы) доказать, что не может быть двух различных нейтральных элементов. То есть если е и е' — элементы, удовлетворяющие аксиоме 2, то обязательно е = е'. Доказательство состоит в следующем: предположим, что для e и e' верна аксиома 2. Тогда, так как е — нейтральный элемент, е • е' = е' (при операциях с е не происходит никаких изменений). Но е также нейтральный элемент, тогда e' • е = е (при операциях с е' не происходит никаких изменений). Получается, что:

е = е' • е = е • e' = е', следовательно, е = е'.

Любое утверждение, выводимое из аксиом, обязательно будет справедливо во всех моделях, потому что это же самое доказательство воспроизводимо на каждом конкретном примере. Следовательно, в любом примере, выполняющем аксиомы 1 и 2, окажется, что нейтральный элемент операции является единственным. Это происходит, конечно же, в случае суммы (где нет другого нейтрального элемента, кроме 0) и произведения (где единственный нейтральный элемент — 1).

Теперь назовем поглощающим такое число ƒ, что при операциях с ним результат вновь дает ƒ(то есть а • ƒ = ƒ), и рассмотрим утверждение Р "у операции есть поглощающий элемент". Вопрос: можно ли вывести Р из аксиом 1 и 2? Можно ли вывести отрицание Р? Из того факта, что операция коммутативна и имеет нейтральный элемент, можем ли мы вывести, обладает она поглощающим элементом или нет?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «У интуиции есть своя логика. Гёдель. Теоремы о неполноте.»

Представляем Вашему вниманию похожие книги на «У интуиции есть своя логика. Гёдель. Теоремы о неполноте.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «У интуиции есть своя логика. Гёдель. Теоремы о неполноте.»

Обсуждение, отзывы о книге «У интуиции есть своя логика. Гёдель. Теоремы о неполноте.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x