Среди неизданных бумаг выделяется текст Гиббсовской лекции, которую Гёделя пригласили прочитать на ежегодной встрече Американского математического общества, состоявшейся в Провиденсе 26 декабря 1951 года. По свидетельствам, Гёдель ограничился тем, что быстро прочел подготовленную заранее рукопись и даже не предоставил права на вопросы и комментарии в конце, хотя его встречали громкими аплодисментами, вызванными редкой возможностью лично увидеть гения такого уровня.
В последующие годы Гёдель занимался тем, что исправлял и завершал рукопись с намерением опубликовать ее, однако ему так и не удалось придать ей форму, которая удовлетворяла бы его самого. В конце концов лекция была опубликована в 1994 году как часть сборника под названием "Курт Гёдель, неизданные очерки".
Чем так интересна Гиббсовская лекция? В ней Гёдель очень детально (больше, чем в любой другой своей работе) изложил собственное понимание философских следствий из своих теорем о неполноте. В этой лекции он утверждал: теоремы доказывают, что математический платонизм — правильная позиция философии математики.
Вопрос состоит в следующем: математика создается или открывается? Это человеческое творение, или ученые открывают факты, существующие во внешней реальности независимо от них?
Платонизм утверждает, что математические объекты имеют объективное существование, и работа ученых состоит в том, чтобы открывать характеристики этих объектов. Платон был уверен, что наши ощущения — только деформированное отражение высшей действительности, существующей в "мире идей". В этом самом мире живут и объекты, исследуемые математиками.
Знаменитая теорема Гёделя о неполноте показывает, что нет никаких формальных [синтаксических] методов доказательства, с помощью которых можно доказать все математические истины.
Уиллард ван Орман Куайн о теореме Гёделя
Противоположная позиция, которая обычно называется формализмом и в которой собраны некоторые идеи интуиционизма и программы Гильберта, утверждает, что математика — это творение человека, подобное музыке. С этой точки зрения математика — лингвистическая (синтаксическая) игра, в которой есть некоторые отправные точки (аксиомы) и логические правила, позволяющие осуществлять операции на их основе. Работа ученого состоит в том, чтобы открыть, куда нас заведут правила игры (что, по сути, не сильно отличается от работы шахматиста, который ищет оптимальный ход в определенной позиции). Если, согласно платонизму, математические объекты существуют сами по себе, а ученые открывают их свойства, то формализм утверждает обратное: математические объекты и их свойства существуют лишь благодаря ученым. У обеих позиций есть сильные и слабые стороны, и они существуют в математической мысли параллельно друг другу. Современный философ математики Джон Барроу пишет: "Математики — формалисты с понедельника по пятницу и платонисты по выходным".
То есть для повседневной работы, для доказательства теорем и написания статей формалистская позиция является более подходящей, поскольку в конечном счете любая истина основывается на аксиомах, выбор которых не нуждается в дальнейших подтверждениях (в формализме требуется только, чтобы аксиомы были непротиворечивыми, но они не обязаны отражать внешнюю истинность). Однако по выходным, когда математики расслабляются, они чувствуют, что работают с "истинными объектами", существование которых независимо и реально (что бы это ни означало).
Обе позиции четко разделены в отношении вопроса континуум-гипотезы. В предыдущей главе мы увидели, что континуум-гипотеза (СН) неразрешима относительно аксиом теории множеств. Так истинна она или ложна? Для чистого формалиста (хотя сегодня таких почти не существует) ответ не имеет смысла. Аксиомы — это правила игры, выбранные произвольно, не отражающие никакую внешнюю "истинность"; существуют только синтаксические понятия "доказуемого" и "недоказуемого", а не понятия "истинности" или "ложности". Согласно этой точке зрения так же законно добавить в теорию множеств новую аксиому, при которой СН будет доказуема, как и добавить другую аксиому, при которой она будет опровергнута. Две различные теории множеств могут существовать параллельно друг другу так же, как одновременно существуют различные виды шахмат (например, китайские и японские), которые допускают варианты правил игры, и нет необходимости думать, что существуют "истинные" шахматы.
Читать дальше