Другая теорема, которую Гёдель представил в этой статье 1931 года, сегодня известна как вторая теорема о неполноте, или вторая теорема Гёделя. В ней говорится о невозможности алгоритмически проверить истинность множества арифметических аксиом. Мы обсудим эту теорему чуть позже. Следует сказать, что в статье не содержалось ее детального доказательства. Гёдель ограничился лишь тем, что в общих чертах изложил идею и отметил, что собирается написать вторую часть статьи с полным доказательством. Однако болезнь помешала ему сделать это в ближайшие месяцы, а после выздоровления выяснилось, что доказательства обеих теорем (даже второй, о которой ученый только намекнул) получили всеобщее признание. В этой ситуации Гёдель не счел нужным публиковать дополнительные пояснения, поэтому вторая часть статьи так и не была написана. (Оригинальное название статьи на немецком языке заканчивается римской цифрой I: это указывает на то, что речь идет только о первой части. В переводах на испанский, английский и другие языки ее обычно опускают.)
Преодолев нервный кризис, Гёдель в 1933 году начал работу в Венском университете в качестве приват-доцента. В то время в университетах Центральной Европы с должности приват-доцента обычно начинали карьеру преподавателя. Кроме того, как мы уже сказали, Гёдель превратился в международную знаменитость и в том же году был приглашен в США прочитать лекцию на ежегодном собрании Американского математического общества.
Во время этой первой поездки в США Гёдель познакомился с Альбертом Эйнштейном, который эмигрировал туда в 1933 году. Между ними сразу зародилась теплая дружба, которая длилась до самой смерти Эйнштейна в 1955 году.
В последующие два года, 1934 и 1935, Гёдель снова ездил в США, уже по приглашению Института перспективных исследований в Принстоне. В этом учреждении он прочитал несколько курсов и лекций, не только по своим теоремам о неполноте, но и по темам, затронутым в последующих исследованиях. Среди них, например, такая проблема: существует ли алгоритм, который при заданном множестве аксиом и высказывании Р позволит определить, доказуемо ли Р на основе этих аксиом? Гёдель получил несколько частичных решений, а полностью проблема была решена в 1936 году американским логиком Алонзо Чёрчем, который доказал, что алгоритма с такими
характеристиками не существует. Эта проблема, как и другие, поставленные самим Гёделем или другими логиками, вдохновленными его исследованиями, положила начало теории вычислимости, то есть изучению того, при каких условиях математическая проблема решаема алгоритмически.
ИНСТИТУТ ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ В ПРИНСТОНЕ
Институт перспективных исследований в Принстоне (Нью-Джерси, США), основанный в 1930 году, имел целью собрать международную научно-исследовательскую элиту. И действительно, в нем трудились такие прославленные ученые, как Курт Гёдель, Альберт Эйнштейн, Джулиус Роберт Оппенгеймер (американский физик-теоретик, научный руководитель Манхэттенского проекта), Джон фон Нейман, Оскар Моргенштерн (последние двое — создатели теории игр) и Герман Вейль (выдающийся немецкий физик и математик).
Во время поездок в США Гёдель продемонстрировал свои методы, идеи и поставленные им проблемы, и это дало импульс развитию американской школы математической логики, где блистали Уиллард ван Орман Куайн, Стивен Коул Клини и уже упомянутый Алонзо Чёрч. Также работы Гёделя дали толчок развитию математической логики в целом; по сравнению с другими ученый публиковал очень мало научных работ, но каждая из них открывала новую отрасль в логике и вводила методы и идеи, актуальные до сих пор.
АЛОНЗО ЧЁРЧ
Алонзо Чёрч был одним из главных представителей американской школы математической логики, которая образовалась практически сразу после прочтения Гёделем курсов и лекций в США в 1930-х годах. Чёрч родился в Вашингтоне 14 июня 1903 года и изучал математику в Принстонском университете, где защитил докторскую диссертацию в 1927 году. Его научным руководителем был Освальд Веблен (который помогал в организации Института перспективных исследований в Принстоне и пригласил Гёделя прочитать там свои первые лекции). Чёрч внес вклад в логику первого порядка, теорию вычислимости (которая исследует, какие математические проблемы могут быть решены алгоритмически, а какие нет) и теоретическую информатику. Он также создал лямбда-исчисление, которое до сих пор является важным инструментом в изучении теории алгоритмов. Ученый скончался в США в 1995 году.
Читать дальше