Gustavo Pineiro - У интуиции есть своя логика. Гёдель. Теоремы о неполноте.

Здесь есть возможность читать онлайн «Gustavo Pineiro - У интуиции есть своя логика. Гёдель. Теоремы о неполноте.» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М.:, Год выпуска: 2015, Издательство: ООО «Де Агостини»,, Жанр: Математика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

У интуиции есть своя логика. Гёдель. Теоремы о неполноте.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «У интуиции есть своя логика. Гёдель. Теоремы о неполноте.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств. Так же как и его друг Альберт Эйнштейн, он оспаривал догмы современной науки, и точно так же в его жизни присутствовали война и изгнание.

У интуиции есть своя логика. Гёдель. Теоремы о неполноте. — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «У интуиции есть своя логика. Гёдель. Теоремы о неполноте.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Да, так и есть, можно построить высказывание, относящееся к его собственному коду. В своей статье Гёдель изложил систематический метод, позволяющий записать арифметические высказывания, относящиеся к собственному коду. Если Р — это любое арифметическое свойство (такое, как "быть четным числом" или "быть простым числом"), то этот метод — метод самореференции — объясняет, как записать высказывание, которое может означать "мой код выполняет свойство Р". Основной инструмент этого метода — функция d(x), которую Гёдель назвал диагональной.

Функция — это правило, которое каждому числу х ставит в соответствие другое число. Оно может совпадать с х или отличаться, но вычисляется однозначно (одному и тому же х не могут соответствовать два разных числа). Правилами могут быть "умножить число х само на себя" или "прибавить 3 к числу х". Для числа 2 первая функция даст значение 4, а вторая — 5. В частности, нас интересуют функции, которые могут быть выражены в терминах сумм, произведений и логических операций.

Пропозициональные функции получили это название, потому что они похожи на функции, но ставят в соответствие не числа, а высказывания. Например, пропозициональная функция "х — четное число" сопоставляет числу 2 высказывание "2 — четное число".

В запись пропозициональных функций мы можем ввести числовые функции, если только они могут быть выражены в терминах сумм, произведений и логических операций. Так, мы можем записать: "х + 3 — простое число" или даже "х² делится на 18", и в обоих случаях это полноправные пропозициональные функции.

Теперь рассмотрим определение функции d(x), которая на самом деле вычисляется только для чисел, являющихся кодами пропозициональных функций. Поясним определение на примере. Возьмем код пропозициональной функции, например 171, который, как мы предположили, является числом Гёделя выражения "х — четное число". Далее в этой пропозициональной функции заменим х числом 171. Мы получим высказывание "171 — четное число". Код этого высказывания — d( 171), число, которое диагональная функция назначает числу 171:

171 → соответствует "х — четное число" → заменяем х на 171 → "171 — четное число" → d(171) — код "171 — четное число".

В первых примерах мы указали, что "171 — четное число" имеет код, равный 61. Следовательно, d(171) = 61. Диагональная функция сопоставляет числу 171 значение 61.

Во втором примере вычислим d(162), где 162 — это код "отделится на 18":

162 → соответствует "х делится на 18" → заменяем х на 162 → "162 делится на 18" → d(162) — это код "162 делится на 18".

Так как "162 делится на 18" имеет код 103, то d(162) = 103. Все шаги, определяющие диагональную функцию, могут быть вычислены алгоритмически, следовательно, ее определение можно выразить с помощью сумм, произведений и логических операций. Это обстоятельство дает нам право ввести числовую функцию d(x) в выражение пропозициональной функции, точно так же как в предыдущих примерах мы это делали с х² или х + 3. Таким образом мы можем рассмотреть выражение "d(x) — четное".

Предположим, что "d(x) — четное" соответствует код 423, и применим эту процедуру для вычисления d(423):

423 —> соответствует "d(x) — четное" -" заменяем х на 423 —" —" "d(423) — четное" —> d(423) — код "d(423) — четное".

ТЕОРЕМА ГУДСТЕЙНА

Возьмем любое натуральное число, например 25. На его основе построим последовательность чисел, называемую последовательностью Гудстейна для числа 25 (названа в честь Рубена Луиса Гудстейна (1912-1985), английского математика, который впервые ее определил). Для получения второго числа последовательности запишем 25 как сумму степеней числа 2 так, чтобы каждая степень появлялась ровно один раз (1 — это тоже степень числа 2, поскольку 2 0= 1):

25 = 2 4+2 3+1.

И запишем также каждый показатель степени как сумму степеней числа 2 25 - фото 26

И запишем также каждый показатель степени как сумму степеней числа 2:

25 = 2 2²+2 2+1+ 1.

Второй член последовательности получается, если заменить каждое 2 на 3 в выражении 222 + 2 2+1+1 и затем вычесть 1:

(З 3³+ З 3+1+1) - 1 = З 3³+ З 3+1 = 7625597485068

Второе число последовательности Гудстейна для числа 25 — это 7625597485068. Для получения третьего числа заменяем каждое 3 на 4 в З 3³+ З 3+1и вычитаем 1. Получается 4 4⁴+ 4 4+1- 1, операция, которая в результате дает число из 155 цифр. Прежде чем перейти к следующему шагу, надо записать 4 4⁴+ 4 4+1- 1 как сумму степеней числа 4, в которой каждая степень появляется самое большое 3 раза и в которой показатели степени также являются суммой степеней числа 4. Заметьте, что 4 4⁴+ 4 4+1- 1 не записано таким образом, поскольку присутствует вычитание. Правильная запись:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «У интуиции есть своя логика. Гёдель. Теоремы о неполноте.»

Представляем Вашему вниманию похожие книги на «У интуиции есть своя логика. Гёдель. Теоремы о неполноте.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «У интуиции есть своя логика. Гёдель. Теоремы о неполноте.»

Обсуждение, отзывы о книге «У интуиции есть своя логика. Гёдель. Теоремы о неполноте.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x