Оно является семантическим, если зависит от значения (например, утверждение об истинности или ложности предложения). Синтаксические свойства проверяются механически; семантические — нет.
ПЕРЕСМОТР ПЕРВОЙ ТЕОРЕМЫ
Итак, Курт Гёдель представил доказательство первой теоремы о неполноте таким образом, что всем было очевидно: ее можно проверить с помощью компьютера. Он изложил свое высказывание и каждый шаг доказательства теоремы, апеллируя только к синтаксическим понятиям.
В предыдущей главе мы сформулировали первую теорему Гёделя о неполноте (теорему Гёделя) следующим образом.
Если выбрать в качестве аксиом любое множество истинных арифметических высказываний и требовать, чтобы доказательства, которые получены на их основе, могли быть проверены алгоритмически, то будет по крайней мере одно истинное высказывание, которое не может быть доказано на основе этих аксиом.
В этой формулировке теоремы появляется семантическое понятие истинности. Поэтому Гёдель представил его в статье 1931 года не в такой форме. Формулировка Гёделя аналогична, но записана с помощью только синтаксических понятий.
Определим синтаксические понятия, которыми пользовался Гёдель, и переформулируем первую теорему о неполноте.
Для начала скажем, что "являться доказательством, соответствующим требованиям программы Гильберта" — это синтаксическое свойство, поскольку его можно проверить с помощью компьютера посимвольно. Следовательно, идея "доказуемого высказывания" также синтаксическая, поскольку высказывание Р доказуемо, если существует доказательство, заканчивающееся этим высказыванием.
Даже понятие "высказывание" может быть определено синтаксически. Для начала, в аристотелевском определении говорится, что высказывание — это выражение, которому можно назначить значение истинности (истинно или ложно). Так,
"х — простое число"
не является высказыванием, поскольку его значение истинности зависит от того, каково х. И напротив, из двух высказываний:
"Существует некоторое х }являющееся простым числом", "Для любого х справедливо, что х — простое число"
первое истинное, а второе ложное.
Итак, это семантическое понятие может быть сформулировано синтаксически: высказывание — это выражение, не имеющее переменных (букв х, у, z), которые могут быть свободно заменены числами. То есть это выражение, в котором либо нет переменных, как в случае "4 = 2 + 2", либо все они сопровождаются выражениями типа "для любого х справедливо, что..." или "существует некоторое х, которое...", как это происходит в предыдущих двух примерах. Является выражение высказыванием или нет — это условие можно проверить посимвольно, при этом нет необходимости рассматривать значение выражений. Итак, "высказывание" и "доказуемое высказывание" — два синтаксических понятия, которые Гёдель мог использовать при формулировании своей теоремы.
СИНТАКСИЧЕСКАЯ АВТОРЕФЕРЕНЦИЯ
В своей работе Principia Mathematica ("Принципы математики") Бертран Рассел утверждал, что все известные парадоксы всегда порождаются самореференцией. То есть они возникают из-за того, что в высказываниях прямо или косвенно говорится о них самих. Способ избежать любого парадокса, говорил Рассел, — исключить из языка любой намек на самореференцию. В семантическом самореферентном высказывании говорится о семантической характеристике как таковой. Таков случай "это предложение ложно", то есть утверждение, вызывающее парадокс лжеца. В синтаксической самореференции, наоборот, в самореферентном высказывании говорится о синтаксической характеристике как таковой. Например: "в этом предложении пять слов". Семантическая самореференция, как говорил Рассел, всегда опасна и подводит нас к границе парадокса. Синтаксическая самореференция, наоборот, не несет в себе никакого риска. Почему? Потому что синтаксическая самореференция иллюзорна; кажется, что в предложении говорится о нем самом, но на самом деле здесь раздвоение: в значении предложения говорится не о нем самом, а о символах, которые его образуют. Когда мы говорим: "в этом предложении пять слов", мы имеем в виду:
"В предложении "в этом предложении пять слов" содержится пять слов".
Отрицание этого:
"В предложении "в этом предложении пять слов" содержится не пять слов".
Мы говорим о символах, а не о смысле, так что нет риска получить парадокс. В высказывании Гёделя G утверждается, что оно недоказуемо, то есть речь идет о синтаксической характеристике себя самого. Так как самореференция синтаксическая, рассуждения на основе G никогда не приведут нас к парадоксу.
Читать дальше