Gustavo Pineiro - У интуиции есть своя логика. Гёдель. Теоремы о неполноте.

Здесь есть возможность читать онлайн «Gustavo Pineiro - У интуиции есть своя логика. Гёдель. Теоремы о неполноте.» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М.:, Год выпуска: 2015, Издательство: ООО «Де Агостини»,, Жанр: Математика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

У интуиции есть своя логика. Гёдель. Теоремы о неполноте.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «У интуиции есть своя логика. Гёдель. Теоремы о неполноте.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств. Так же как и его друг Альберт Эйнштейн, он оспаривал догмы современной науки, и точно так же в его жизни присутствовали война и изгнание.

У интуиции есть своя логика. Гёдель. Теоремы о неполноте. — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «У интуиции есть своя логика. Гёдель. Теоремы о неполноте.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

«Верно, что 2 + 2 = 4» (утверждение типа 2, в котором говорится о предыдущем).

Однако по техническим причинам Рассел был вынужден усложнить свою стратификацию и ввести произвольные и неинтуитивные правила. Вследствие этого система потеряла убедительность, и Рассел в итоге оставил ее. Хотя некоторые элементы, введенные логицизмом, дошли до наших дней, к 1920 году влияние этой школы практически исчезло.

Второе решение стало известно как интуиционизм, или конструктивизм, и его лидером был нидерландский математик Лёйтзен Эгберт Ян Брауэр (1881-1966).

Решение задач, которые до этого времени окружали математическую бесконечность, — возможно, самое большое из достижений, которыми может гордиться наша эпоха.

Бертран Рассел, 1910 год

Интуиционисты утверждали, что появление парадоксов напрямую обязано введению понятия актуальной бесконечности и это понятие, как утверждали еще Аристотель и Галилей, противоречиво само по себе. Вся теория Кантора не имеет смысла и должна быть оставлена, а математика — в том, что касается бесконечности, — должна вернуться к положению, существовавшему до 1870 года.

Основой математики должны быть натуральные числа и операции с ними — сложение и умножение. Эти числа не нуждаются в определении, поскольку понятие о них априори заложено в нашем сознании. Числа должны пониматься не как законченная бесконечная совокупность, а как результат непрерывного процесса (упомянутый ранее пример с народом), который начинался с числа 1 и продолжался неопределенное время за счет применения понятия последующего элемента (1 — первый элемент, 2 — элемент, следующий за 1, 3 — элемент, следующий за 2, и так далее).

Для утверждения о том, что существует математический объект, отличный от натуральных чисел, необходимо, чтобы его можно было построить за конечное число шагов на основе натуральных чисел с помощью строго определенной процедуры. Объекта, который невозможно построить таким образом, просто не существует. В некотором смысле интуиционисты возвращались к идее, содержащейся в сентенции Леопольда Кронекера: «Бог создал целые числа, все остальное — дело рук человека».

ЛЁЙТЗЕН ЭГБЕРТ ЯН БРАУЭР

Лёйтзен Эгберт Ян Брауэр родился в Роттердаме, Голландия, 27 февраля 1881 года, за два года до публикации статьи Кантора, в которой впервые была введена в математику актуальная бесконечность. В1904 году, сразу после окончания университета, Брауэр доказал несколько оригинальных результатов о непрерывном движении в четырех измерениях, которые были опубликованы Амстердамской королевской академией наук. В его докторской диссертации, опубликованной в 1907 году, речь шла о проблеме оснований математики. В этой работе он ввел первые понятия об интуиционизме. Также ученый внес значительный вклад в топологию, где доказал знаменитую теорему о неподвижной точке, носящую его имя. Что любопытно, доказательство этой теоремы не выполняет интуиционистских стандартов. В1935 году Брауэр занялся политикой и практически отдалился от математических исследований, хотя в том же году основал журнал Compositio Mathematica и продолжал деятельность в качестве его издателя. Брауэр скончался 2 декабря 1966 года в Бларикюме (Голландия) в результате автокатастрофы.

С другой стороны согласно интуиционистам для того чтобы определение свойства - фото 11

С другой стороны, согласно интуиционистам, для того чтобы определение свойства было справедливым, должна существовать механическая процедура (которую можно реализовать на компьютере, поскольку алгоритм — это не что иное, как последовательность действий), и с ее помощью можно проверить, выполняется ли свойство. Например, свойство «быть простым числом» для интуиционистов справедливо, поскольку его всегда можно проверить за конечное количество шагов. Чтобы узнать, является ли число 17677 простым, достаточно разделить его на все числа, меньшие его. Если во всех случаях деления есть остаток, то число простое. Процедура, которую мы описали, не самая лучшая (есть более быстрые методы), но она всегда дает правильный ответ за конечное количество шагов.

Чтобы рассмотреть пример свойства, не принимаемого интуиционистами, определим число р, используя знаки числа π = 3,14159265... (которое, как мы знаем, является иррациональным, то есть имеет бесконечное непериодическое количество знаков после запятой). Число р определяется следующим образом: если среди знаков числа π появится хотя бы одна последовательность ровно из 15 нулей подряд, то р — это цифра (отличная от нуля), следующая после первого появления этих нулей. Если никогда не появятся 15 нулей подряд, то р равно 0. Отметим, что среди знаков числа π, вычисленных на сегодняшний день, последовательность из 15 нулей еще не появилась.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «У интуиции есть своя логика. Гёдель. Теоремы о неполноте.»

Представляем Вашему вниманию похожие книги на «У интуиции есть своя логика. Гёдель. Теоремы о неполноте.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «У интуиции есть своя логика. Гёдель. Теоремы о неполноте.»

Обсуждение, отзывы о книге «У интуиции есть своя логика. Гёдель. Теоремы о неполноте.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x