Теперь вернемся к аксиоме выделения. Возьмем множество, связанное со свойством «быть множеством, не являющимся членом самого себя». Пусть множество R образовано всеми множествами, не являющимися членами самого себя. Сформулируем следующий вопрос: является ли R элементом самого себя? Если R является членом самого себя, то выполняется свойство, определяющее R. По нему R не является членом самого себя. Это противоречие. Но если R не является членом самого себя, то не выполняется свойство, определяющее R. Следовательно, если не выполняется свойство, R все-таки является членом самого себя. Получается другое противоречие.
То есть R не может быть членом самого себя, но также не может и не быть им. Это логический парадокс. Множество R (существование которого обусловлено аксиомой выделения) не может существовать, потому что это порождает логическое противоречие. Итак, аксиома выделения, которая казалась такой невинной, на самом деле противоречит самой себе. Это открытие сегодня известно как парадокс Рассела.
Открытие противоречивости теории множеств развязало кризис оснований математики. Если такая невинная с виду аксиома выделения порождает противоречие, чего ждать от теории Кантора с актуальной бесконечностью и «бесконечностями, которые больше, чем другие бесконечности»? Положение осложнялось тем, что теория Кантора уже проникла в основные области математики, такие как анализ и топология.
БРАДОБРЕЙ РАССЕЛА
В 1904 году британский философ и математик Бертран Рассел (1872-1970) представил популярную версию своего парадокса. Он предложил представить себе, что в некой деревне есть только один брадобрей, бреющий всех мужчин, которые не бреются сами. Но бреет ли он сам себя? Ответ в том, что брадобрей не может бриться сам, но также не может и не делать этого.
Из-за открытия Рассела математики задались вопросом о справедливости всех математических открытий по меньшей мере за 30 предыдущих лет. Они начали сомневаться в справедливости любого рассуждения, включающего в себя бесконечность, и даже задавали вопросы о смысле и значении математики. Каков конкретно объект изучения математики? Какие критерии подтверждают справедливость ее рассуждений?
Сам Фреге почувствовал, что открытие Рассела разрушает всю его работу. Во второй том своих «Основных законов...» он добавил следующие слова:
«Ученому сложно встретиться с чем-то более нежелательным, чем увидеть, как подрывается фундамент, когда работа уже заканчивается. Таково положение, в которое меня поставило письмо господина Бертрана Рассела, когда работа была уже почти напечатана».
Сразу после этого Фреге оставил борьбу и сдался. Он прожил до 1925 года, но никогда больше не вернулся к теме оснований.
ЛОГИЦИЗМ И ИНТУИЦИОНИЗМ
Какую реакцию вызвало открытие парадокса Рассела? С самого начала было предложено два решения. Первая попытка принадлежит самому Расселу и выражена в монументальной работе «Основания математики», которую он написал вместе со своим учителем Альфредом Уайтхедом.
Предложение Рассела, которое получило название «логицизм», состояло в том, чтобы вернуться к работе Фреге, но перечислить ошибки, приведшие к кризису. Рассел говорил, что любой парадокс возникает от наличия самореференции. Например, знаменитый парадокс лжеца, который возникает, когда встает вопрос, является фраза «это предложение ложно» истинной или ложной. Он рождается из-за анализа фразы, в которой говорится о ней же. Сам парадокс Рассела возникает из вопроса о том, выполняет ли некое множество свойство, определяющее само множество.
Во избежание этих ситуаций логицизм предлагает радикальное изменение логического языка с помощью теории типов. Общая идея заключается в том, чтобы назначить языку математики строгую иерархию, в которой каждое утверждение может относиться только к сущностям или утверждениям, расположенным на более низких уровнях. Таким образом, сама структура языка избегает самореференций и, следовательно, парадоксов.
На нулевом уровне иерархии находятся индивиды; на уровне 1 — утверждения, в которых говорится об индивидах; на уровне 2 — утверждения, в которых говорится об утверждениях типа 1, и так далее. Например:
1, 2,3, 4,... (индивиды, тип 0);
«2 + 2 = 4» (утверждение типа 1, в котором говорится об индивидах);
Читать дальше