Всеволод Беллюстин - Как постепенно дошли люди до настоящей арифметики [без таблиц]

Здесь есть возможность читать онлайн «Всеволод Беллюстин - Как постепенно дошли люди до настоящей арифметики [без таблиц]» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1909, Издательство: Типографiя К. Л. Меньшова, М., 1909, Жанр: Математика, Публицистика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Как постепенно дошли люди до настоящей арифметики [без таблиц]: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Как постепенно дошли люди до настоящей арифметики [без таблиц]»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В тексте используется дореволюционная орфография. Если у вас не отображаются символы «ять» и другие, установите шрифт Palatino Linotype, или какой‐нибудь свободный шрифт с их поддержкой
Викитека Всякому, кто любитъ свой предметъ, бываетъ интересно знать, какъ онъ начался, какимъ путемъ онъ развивался, и какъ онъ вылился въ свою послѣднюю форму. Въ этой книжкѣ изложена исторія ариѳметики, и очерки ея назначены для тѣхъ, кто чувствуетъ расположеніе къ математикѣ. Юнымъ математикамъ я прежде всего назначаю свой трудъ. Онъ же можетъ пригодиться и для педагога: для учителя крайне важно, чтобы расширился его кругозоръ, чтобы онъ могъ критически отнестись къ настоящему положенію преподаванія, и чтобы историческія данныя оживили обученіе и освѣтили его.
Въ Германіи имѣется масса сочиненій по исторіи математики; очевидно, они нужны и полезны. Пусть же и въ Россіи мой небольшой трудъ сослужитъ свою скромную службу.
О первомъ изданіи этой книжки данъ отзывъ въ «Вѣстникѣ воспитанія» I, 1908 г. и въ «Вѣcтникѣ опытной физики и элементарной математики», № 445. Она названа «интересной», «просто, ясно и кратко написанной».

Как постепенно дошли люди до настоящей арифметики [без таблиц] — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Как постепенно дошли люди до настоящей арифметики [без таблиц]», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
эта сумма подобно дѣлитеkю является уже числомъ меньшимъ 10ти Такимъ - фото 60

эта сумма, подобно дѣлитеkю, является уже числомъ меньшимъ 10-ти. Такимъ образомъ оказывается, что остатокъ отъ дѣленія равенъ 1. Искомое частное 1267. Первоначально римскій способъ примѣнялся на абакѣ, при помощи римскихъ цифръ; но съ теченіемъ времени, когда въ Европу проникли арабскія цифры, онъ сталъ примѣняться и на нихъ и долго не уступалъ своего мѣста новымъ пріемамъ. Теперь онъ уже совершенно оставленъ и рѣшительно нигдѣ не встрѣчается. А между тѣмъ и у него есть нѣкоторое удобство, которое возвышаетъ его въ этомъ отношеніи: именно легкое угадываніе цифръ частнаго. Въ нашемъ нормальномъ дѣленіи иногда случается задаваться не тою цифрою, какая нужна, а большей или менmiей; у римлянъ же это могло случаться гораздо рѣже, потому что дѣлителемъ у нихъ всегда служило круглое число, про которое легко найти, сколько разъ оно содержится въ дѣлимомъ.

Приведемъ образцы письменнаго расположенія по этому способу. Примѣры: 672 : 16 и 3276 : 84.

Другіе способы дѣленія 1 Самымъ простымъ общедоступнымъ путемъ дѣленія - фото 61

Другіе способы дѣленія.

1) Самымъ простымъ, общедоступнымъ путемъ дѣленія, правда длиннымъ и утомительнымъ, является замѣна дѣленія вычитаніемъ; поэтому всѣ народы, которые находятся на низшихъ ступеняхъ развитія, производятъ дѣленіе при ломощи вычитанія: потому также полезно было бы давать и малымъ дѣтямъ нѣсколько упражненій на послѣдовательное вычитаніе, прежде чѣмъ переходить съ ними къ дѣленію. Примѣровъ замѣны дѣленія вычитаніемъ можно указать много у разныхъ народовъ, особенно же среди мало образованныхъ классовъ. Такъ, въ средніе вѣка въ Германіи среди простого народа часто употреблялся счетъ на маркахъ, т.-е. на костяшкахъ—костяшки эти клались въ колонны, въ особую колонну для каждаго разряда— въ такомъ случаѣ дѣлитель откладывался отъ дѣлимаго столько разъ, сколько было возможно, и число отложенныхъ дѣлителей показывало величину отвѣта, потому что раздѣлить—значитъ узнать, сколько разъ дѣлитель содержится въ дѣлимомъ.

2) Замѣна дѣленія умноженіемъ нѣсколько труднѣе, чѣмъ замѣна его вычитаніемъ; она не такъ доступна, понятна и наглядна; ее мы встрѣчаемъ на тѣхъ ступеняхъ развитія науки, когда совершается переходъ отъ простонародныхъ пріемовъ вычисленія къ точнымъ научнымъ пріемамъ. Такъ, напр., у индусовъ до выработки нормальныхъ способовъ дѣленія мы видимъ массу попытокъ привести его къ умноженію; при этомъ и само умноженіе совершается такимъ искусственнымъ порядкомъ, какой встрѣчается еще въ глубокой древности у египтянъ, распространенъ былъ среди всѣхъ народовъ и пользуется до сегодня популярностью среди самоучекъ и немудрыхъ счетчиковъ. Для поясненія беремъ примѣръ у Евтокія, греческаго писателя въ VI в. по Р. X. Требуется раздѣлить 6152 на 15. Для этого Евтокій составляетъ рядъ чиселъ, кратныхъ 15-ти: 15, 30, 60, 90, 120,150, 180, 210: 240, 270, 300, 600, 900,1200, 1800, 2100, 2400, 2700, 3000, 6000. Рядъ этотъ, какъ видимъ, содержитъ не всѣ кратныя числа, но онъ только пролагаетъ путь къ тому, чтобы догадаться, что 6000 кратно 15, и что въ 6000 содержится 15 четыреста разъ. Остается теперь раздѣлить 152 на 15. Для этого Евтокій снова соcтавляетъ подобный же рядъ: 15, 30, 60, 90, 150 и выводитъ, что 15 въ 150-ти содержится 10 разъ. Всего въ отвѣтѣ получится 410 и 2 въ. остаткѣ.

3) Слѣдующей попыткой къ упрощенію дѣленія является расчлененіе дѣлителя на производителей; оно и теперь примѣняется съ большимъ успѣхомъ, особенно при устномъ счетѣ; именно, чтобы раздѣлить, напр., на 8, можно раздѣлить данное число пополамъ, полученный отвѣтъ опять пополамъ и вновь полученный отвѣтъ еще разъ пополамъ. Для письменнаго вычисленія такой порядокъ особенно рекомендуется итальянцемъ Леонардо Фибонначи (около 1200 г. по Р. X.); при этомъ, въ случаѣ дробнаго частнаго, у него получаетея рядъ дробей съ возрастающиии знаменателями.

Оригинальный пріемъ, основанный на той же идеѣ, даетъ Апіанъ (XVI в. по Р. X.); у него проскальзываетъ нѣчто въ родѣ десятичныхъ дробей, хотя въ его время теорія десятичныхъ дробей находилась въ самомъ зачаточномъ состояніи.

Положимъ, ему надо раздѣлить 11664 на 48; онъ сперва вычисляетъ 11664:6, потомъ отъ каждаго полученнаго разряда беретъ вооьмую долю, это легко достигается тѣмъ, что каждый разрядъ по-множается на 0125, такъ какъ 1:8=0,125. Все дѣйствіе можно представить въ такомъ видѣ.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Как постепенно дошли люди до настоящей арифметики [без таблиц]»

Представляем Вашему вниманию похожие книги на «Как постепенно дошли люди до настоящей арифметики [без таблиц]» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Как постепенно дошли люди до настоящей арифметики [без таблиц]»

Обсуждение, отзывы о книге «Как постепенно дошли люди до настоящей арифметики [без таблиц]» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x