Отметим, что для сетей с сигмоидными элементами требование монотонности означает, что веса всех связей должны быть неотрицательны. Для сетей с Паде элементами требование не отрицательности весов связей является необходимым условием бессбойной работы. Требование монотонности для сетей с Паде элементами приводит к изменению архитектуры сети, не накладывая никаких новых ограничений на параметры сети. На рис. 15 приведены пример немонотонной сети, а на рис. 16 монотонной сети с Паде элементами.
Особо отметим архитектуру еще одного класса сетей — сетей без весов связей. Эти сети, в противовес коннекционистским, не имеют обучаемых параметров связей. Любую сеть можно превратить в сеть без весов связей заменой всех синапсов на умножители. Легко заметить, что получится такая же сеть, только вместо весов связей будут использоваться сигналы. Таким образом в сетях без весов связей выходные сигналы одного слоя могут служить для следующего слоя как входными сигналами, так и весами связей. Заметим, что вся память таких сетей содержится в значениях параметров нелинейных преобразователей. Из разделов «Синапс»и «Умножитель»следует, что сети без весов связей способны вычислять градиент функции оценки и затрачивают на это ровно тоже время, что и аналогичная сеть с весами связей.
Модификация синаптической карты (обучение)
Кроме прямого и обратного функционирования, все элементы должны уметь выполнять еще одну операцию — модификацию параметров. Процедура модификации параметров состоит в добавлении к существующим параметрам вычисленных поправок (напомним, что для сетей с непрерывно дифференцируемыми элементами вектор поправок является градиентом некоторой функции от выходных сигналов). Если обозначить текущий параметр элемента через α , а вычисленную поправку через Δα, то новое значение параметра вычисляется по формуле α'= h 1α+ h 2Δα.
Параметры обучения h 1и h 2определяются компонентом учитель и передаются сети вместе с запросом на обучение. В некоторых случаях бывает полезно использовать более сложную процедуру модификации карты.
Во многих работах отмечается, что при описанной выше процедуре модификации параметров происходит неограниченный рост величин параметров. Существует несколько различных методов решения этой проблемы. Наиболее простым является жесткое ограничение величин параметров некоторыми минимальным и максимальным значениями. При использовании этого метода процедура модификации параметров имеет следующий вид:
Контрастирование и нормализация сети
В последние годы широкое распространение получили различные методы контрастирования или скелетонизации нейронных сетей. В ходе процедуры контрастирования достигается высокая степень разреженности синаптической карты нейронной сети, так как большинство связей получают нулевые веса (см. например [47, 100, 303, 304]).
Очевидно, что при такой степени разреженности ненулевых параметров проводить вычисления так, как будто структура сети не изменилась, неэффективно. Возникает потребность в процедуре нормализации сети, то есть фактического удаления нулевых связей из сети, а не только из обучения. Процедура нормализации состоит из двух этапов:
1. Из сети удаляются все связи, имеющие нулевые веса и исключенные из обучения.
2. Из сети удаляются все подсети, выходные сигналы которых не используются другими подсетями в качестве входных сигналов и не являются выходными сигналами сети в целом.
В ходе нормализации возникает одна трудность: если при описании нейронной сети все нейроны одинаковы, и можно описать нейрон один раз, то после удаления отконтрастированных связей нейроны обычно имеют различную структуру. Компонент сеть должен отслеживать ситуации, когда два блока исходно одного и того же типа уже не могут быть представлены в виде этого блока с различными параметрами. В этих случаях компонент сеть порождает новый тип блока. Правила порождения имен блоков приведены в описании выполнения запроса на нормализацию сети.
Примеры сетей и алгоритмов их обучения
В этом разделе намеренно допущено отступление от общей методики — не смешивать разные компоненты. Это сделано для облегчения демонстрации построения нейронных сетей обратного распространения, позволяющих реализовать на них большинство известных алгоритмов обучения нейронных сетей.
Читать дальше