На входы сигналов выдаются сигналы обратного функционирования, равные , а на входах параметров вычисляются поправки, равные
Пороговый преобразователь
Пороговый преобразователь, реализующий функцию определения знака (рис. 12а), не является элементом с непрерывной функцией, и, следовательно, его обратное функционирование не может быть определено из требования вычисления градиента. Однако, при обучении сетей с пороговыми преобразователями полезно иметь возможность вычислять поправки к параметрам. Так как для порогового элемента нельзя определить однозначное поведение при обратном функционировании, предлагается доопределить его, исходя из соображений полезности при конструировании обучаемых сетей. Основным методом обучения сетей с пороговыми элементами является правило Хебба (подробно рассмотрено во второй части главы). Оно состоит из двух процедур, состоящих в изменении «весов связей между одновременно активными нейронами». Для этого правила пороговый элемент при обратном функционировании должен выдавать сигнал обратного функционирования, совпадающий с выданным им сигналом прямого функционирования (рис. 12б). Такой пороговый элемент будем называть зеркальным. При обучении сетей Хопфилда[312], подробно рассмотренном во второй части главы, необходимо использовать «прозрачные» пороговые элементы, которые при обратном функционировании пропускают сигнал без изменения (рис. 12в).
Правила остановки работы сети
При использовании сетей прямого распространения (сетей без циклов) вопроса об остановке сети не возникает. Действительно, сигналы поступают на элементы первого (входного) слоя и, проходя по связям, доходят до элементов последнего слоя. После снятия сигналов с последнего слоя все элементы сети оказываются «обесточенными», то есть ни по одной связи сети не проходит ни одного ненулевого сигнала. Сложнее обстоит дело при использовании сетей с циклами. В случае общего положения, после подачи сигналов на входные элементы сети по связям между элементами, входящими в цикл, ненулевые сигналы будут циркулировать сколь угодно долго.
Существует два основных правила остановки работы сети с циклами. Первое правило состоит в остановке работы сети после указанного числа срабатываний каждого элемента. Циклы с таким правилом остановки будем называть ограниченными.
Второе правило остановки работы сети — сеть прекращает работу после установления равновесного распределения сигналов в цикле. Такие сети будем называть равновесными. Примером равновесной сети может служить сеть Хопфилда [312] (см. разд. «Сети Хопфилда»).
Как уже отмечалось ранее, при конструировании сетей из элементов можно построить сеть любой архитектуры. Однако и при произвольном конструировании можно выделить наиболее общие признаки, существенно отличающие одну сеть от другой. Очевидно, что замена простого сумматора на адаптивный или даже на квадратичный не приведут к существенному изменению структуры сети, хотя число обучаемых параметров увеличится. Однако, введение в сеть цикла сильно изменяет как структуру сети, так и ее поведение. Таким образом можно все сети разбить на два сильно отличающихся класса: ациклическиесети и сети с циклами.Среди сетей с циклами существует еще одно разделение, сильно влияющее на способ функционирования сети: равновесные сети с цикламии сети с ограниченными циклами.
Большинство используемых сетей не позволяют определить, как повлияет изменение какого-либо внутреннего параметра сети на выходной сигнал. На рис. 13 приведен пример сети, в которой увеличение параметра α приводит к неоднозначному влиянию на сигнал x 2: при отрицательных x 1произойдет уменьшение x 2, а при положительных x 1— увеличение. Таким образом, выходной сигнал такой сети немонотонно зависит от параметра α. Для получения монотонной зависимости выходных сигналов сети от параметров внутренних слоев (то есть всех слоев кроме входного) необходимо использовать специальную монотонную архитектуру нейронной сети. Принципиальная схема сетей монотонной архитектуры приведена на рис. 14.
Основная идея построения монотонных сетей состоит в разделении каждого слоя сети на два — возбуждающий и тормозящий. При этом все связи в сети устроены так, что элементы возбуждающей части слоя возбуждают элементы возбуждающей части следующего слоя и тормозят тормозящие элементы следующего слоя. Аналогично, тормозящие элементы возбуждают тормозящие элементы и тормозят возбуждающие элементы следующего слоя. Названия «тормозящий» и «возбуждающий» относятся к влиянию элементов обеих частей на выходные элементы.
Читать дальше