Алгоритм обучения.
1. Полагаем поправки всех синапсов равными нулю.
2. Для каждой точки множества { x p } выполняем следующую процедуру.
1. Предъявляем точку сети для классификации.
2. Пусть при классификации получен ответ — класс l . Тогда для обратного функционирования сети подается вектор Δ, координаты которого определяются по следующему правилу:
3. Вычисленные для данной точки поправки добавляются к ранее вычисленным.
3. Для каждого нейрона производим следующую процедуру.
1. Если поправка, вычисленная последним синапсом равна 0, то нейрон удаляется из сети.
2. Полагаем параметр обучения равным величине, обратной к поправке, вычисленной последним синапсом.
3. Вычисляем сумму квадратов накопленных в первых n синапсах поправок и, разделив на –2, заносим в поправку последнего синапса.
4. Проводим шаг обучения с параметрами h 1=0, h 2=-2.
4. Если вновь вычисленные синаптические веса отличаются от полученных на предыдущем шаге, то переходим к первому шагу алгоритма.
В пояснении нуждается только второй и третий шаги алгоритма. Из рис. 18в видно, что вычисленные на шаге 2.2 алгоритма поправки будут равны нулю для всех нейронов, кроме нейрона, выдавшего минимальный сигнал. У нейрона, выдавшего минимальный сигнал, первые n поправок будут равны координатам распознававшейся точки x , а поправка последнего синапса равна единице. После завершения второго шага алгоритма поправка последнего синапса i- го нейрона будет равна числу точек, отнесенных к i- му классу, а поправки остальных синапсов этого нейрона равны сумме соответствующих координат всех точек i — о класса. Для получения правильных весов остается только разделить все поправки первых n синапсов на поправку последнего синапса, положить последний синапс равным сумме квадратов полученных величин, а остальные синапсы — полученным для них поправкам, умноженным на –2. Именно это и происходит при выполнении третьего шага алгоритма.
Персептрон Розенблатта [146, 181] является исторически первой обучаемой нейронной сетью. Существует несколько версий персептрона. Рассмотрим классический персептрон — сеть с пороговыми нейронами и входными сигналами, равными нулю или единице. Опираясь на результаты, изложенные в работе [146] можно ввести следующие ограничения на структуру сети.
1. Все синаптические веса могут быть целыми числами.
2. Многослойный персептрон по своим возможностям эквивалентен двухслойному. Все нейроны имеют синапс, на который подается постоянный единичный сигнал. Вес этого синапса далее будем называть порогом. Каждый нейрон первого слоя имеет единичные синаптические веса на всех связях, ведущих от входных сигналов, и его порог равен числу входных сигналов сумматора, уменьшенному на два и взятому со знаком минус.
Таким образом, можно ограничиться рассмотрением только двухслойных персептронов с не обучаемым первым слоем. Заметим, что для построения полного первого слоя пришлось бы использовать 2 n нейронов, где n — число входных сигналов персептрона. На рис. 19а приведена схема полного персептрона для трехмерного вектора входных сигналов. Поскольку построение такой сети при достаточно большом n невозможно, то обычно используют некоторое подмножество нейронов первого слоя. К сожалению, только полностью решив задачу можно точно указать необходимое подмножество. Обычно используемое подмножество выбирается исследователем из каких-то содержательных соображений или случайно.
Классический алгоритм обучения персептрона является частным случаем правила Хебба. Поскольку веса связей первого слоя персептрона являются не обучаемыми, веса нейрона второго слоя в дальнейшем будем называть просто весами. Будем считать, что при предъявлении примера первого класса персептрон должен выдать на выходе нулевой сигнал, а при предъявлении примера второго класса — единичный. Ниже приведено описание алгоритма обучения персептрона.
1. Полагаем все веса равными нулю.
2. Проводим цикл предъявления примеров. Для каждого примера выполняется следующая процедура.
1. Если сеть выдала правильный ответ, то переходим к шагу 2.4.
2. Если на выходе персептрона ожидалась единица, а был получен ноль, то веса связей, по которым прошел единичный сигнал, уменьшаем на единицу.
3. Если на выходе персептрона ожидался ноль, а была получена единица, то веса связей, по которым прошел единичный сигнал, увеличиваем на единицу.
Читать дальше