Е. Миркес - Учебное пособие по курсу «Нейроинформатика»

Здесь есть возможность читать онлайн «Е. Миркес - Учебное пособие по курсу «Нейроинформатика»» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Красноярск, Год выпуска: 2002, Издательство: КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ, Жанр: Математика, Технические науки, Программирование, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Учебное пособие по курсу «Нейроинформатика»: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Учебное пособие по курсу «Нейроинформатика»»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Данное учебное пособие подготовлено на основе курса лекций по дисциплине «Нейроинформатика», читавшегося с 1994 года на факультете Информатики и вычислительной техники Красноярского государственного технического университета.
Несколько слов о структуре пособия. Далее во введении приведены
по данному курсу,
. Следующие главы содержат одну или несколько лекций. Материал, приведенный в главах, несколько шире того, что обычно дается на лекциях. В приложения вынесены описания программ, используемых в данном курсе (
и
), и
, включающий в себя два уровня — уровень запросов компонентов универсального нейрокомпьютера и уровень языков описания отдельных компонентов нейрокомпьютера.
Данное пособие является электронным и включает в себя программы, необходимые для выполнения лабораторных работ.

Учебное пособие по курсу «Нейроинформатика» — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Учебное пособие по курсу «Нейроинформатика»», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Pascal:

Procedure Interpretator(Signals: PRealArray; Var Answer, Reliability: Real);

C:

void Interpretator(PRealArray Signals, Real* Answer, Real* Reliability);

В разделе описания состава перечисляются частные интерпретаторы, входящие в состав интерпретатора. Признаком конца раздела служит символ «;».

В необязательном разделе установления параметров производится задание значений параметров (статических переменных) частных интерпретаторов. После ключевого слова SetParameters следует список значений параметров в том порядке, в каком параметры были объявлены при описании частного интерпретатора (для стандартных интерпретаторов порядок параметров указан в табл. 29). При использовании одного оператора задания параметров для задания параметров нескольким экземплярам одного частного интерпретатора после ключевого словаsetparameters указывается столько выражений, задающих значения параметров, сколько необходимо для одного экземпляра. Например, если в блоке описания состава содержится 10 экземпляров двоичного интерпретатора на 15 интерпретируемых сигналов — myint: binarycoded(15)[10], то после ключевого слова setparameters должно быть только одно выражение:

MyInt[I:1..10] SetParameters0.01*I

В данном примере первый интерпретатор будет иметь уровень надежности равный 0.01, второй — 0.02 и т. д.

В необязательном разделе описание сигналов указывается число сигналов, интерпретируемых интерпретатором. Если этот раздел опущен, то полагается, что число интерпретируемых интерпретатором сигналов равно сумме сигналов, интерпретируемых всеми частными интерпретаторами. В константном выражении может вызываться функция NumberOf, аргументом которой является имя частного интерпретатора (или его псевдоним) с указанием фактических аргументов.

В необязательном разделе описания распределения сигналов для каждого частного интерпретатора указывается, какие сигналы из общего интерпретируемого массива передаются ему для интерпретации. Если этот раздел отсутствует, то считается, что каждый следующий частный интерпретатор получает следующий фрагмент общего вектора выходных сигналов. В примере 1 данный раздел описывает распределение сигналов по умолчанию.

В необязательном разделе описания распределения ответов для каждого частного интерпретатора указывается, какой элемент массива ответов он вычисляет. Если этот раздел опущен, то считается, что первый частный интерпретатор вычисляет первый элемент массива ответов, второй — второй элемент и т. д. Массив уровней надежностей всегда параллелен массиву ответов. В примере 1 данный раздел описывает распределение ответов по умолчанию.

Кроме того, в любом месте описания интерпретатора могут встречаться комментарии, заключенные в фигурные скобки.

Пример описания интерпретатора

В этом разделе приведены два примера описания одного и того же интерпретатора следующего состава: первый сигнал интерпретируется как температура путем умножения на 10 и добавления 273; следующие два сигнала интерпретируются как наличие облачности, используя знаковый интерпретатор; следующие три сигнала интерпретируются как направление ветра, используя двоичный интерпретатор (восемь румбов); последние три сигнала интерпретируются максимальным интерпретатором как сила осадков (без осадков, слабые осадки, сильные осадки). В первом примере приведено описание дубликатов всех стандартных интерпретаторов. Во втором — использованы стандартные интерпретаторы.

Пример 1.

InterpretatorMeteorology

{Интерпретатор осуществляющий масштабирование и сдвиг сигнала}

InterEmpty1()

Static

RealB Name"Масштабный множитель";

RealC Name"Сдвиг начала отсчета" ;

Begin

Answer= Signals[1] * B + C;

Reliability= 0

End

{Кодирование номером канала. Знаковый интерпретатор}

InterBinary1 : (N : Long)

Static

RealE Name"Уровень надежности";

Var

LongA, B, I ;

RealDist ;

Begin

Dist = E;

B = 0; {Число единиц}

A = 0; {Номер единицы}

ForI = 1 ToN Do Begin

If Abs( Signals[I]) < Dist ThenDist = Abs( Signals[I]);

If Signals[I] > 0 Then BeginA = I; B = B + 1; End;

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Учебное пособие по курсу «Нейроинформатика»»

Представляем Вашему вниманию похожие книги на «Учебное пособие по курсу «Нейроинформатика»» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Учебное пособие по курсу «Нейроинформатика»»

Обсуждение, отзывы о книге «Учебное пособие по курсу «Нейроинформатика»» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x