О. ОРЕ - Приглашение в теорию чисел

Здесь есть возможность читать онлайн «О. ОРЕ - Приглашение в теорию чисел» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1980, Издательство: Наука Главная редакция физико-математической литературы, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Приглашение в теорию чисел: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Приглашение в теорию чисел»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга известного норвежского математика О. Оре раскрывает красоту математики на примере одного из ее старейших разделов — теории чисел. Изложение основ теории чисел в книге во многом нетрадиционно. Наряду с теорией сравнении, сведениями о системах счисления, в ней содержатся рассказы о магических квадратах, о решении арифметических ребусов и т. д. Большим достоинством книги является то, что автор при каждом удобном случае указывает на возможности практического применения изложенных результатов, а также знакомит читателя с современным состоянием теории чисел и задачами, ещё не получившими окончательного решения.

Приглашение в теорию чисел — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Приглашение в теорию чисел», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

По теореме о единственности разложения число а делится на 2, следовательно, а 2делится на 4. И вновь по теореме о единственности разложения, примененней к числу b 2, получаем, что b делится на 2, что противоречит предположению о том, что числа а и b не имеют общих множителей. Полученное противоречие показывает, что √2 — число иррациональное.

Система задач 4.2.

1. Нечетные числа.

2. Если простое число р является делителем чисел n и n + 1, то оно будет делителем числа ( n + 1) — n = 1.

3. Никакие из них не являются взаимно простыми.

4. Да.

Система задач 4.3.

2. D (220, 284) = 4, D (1184, 1210)=2, D (2620, 2924)= 4, D (5020, 5564) = 4.

3. Чтобы определить наибольшую степень числа 10, на которую делится число n = 12•3… n , мы должны сначала найти наибольшую степень числа 5, на которую оно делится. Каждое пятое число 5, 10, 15, 20, 25, 30 делится на 5, всего таких чисел, не превосходящих числа n , [ n /5]. Однако некоторые из них делятся на вторую степень числа 5, а именно, 25, 50, 75, 100…; таких чисел существует [ n /25]. Некоторые из них делятся на третью степень числа 5, т. е. на 125: 125, 250, 375; их существует [ n /5 3] и т. д. Это показывает, что выражение для точной степени числа 5, делящей число n ! таково:

[ n /5] + [ n /5 2] + [ n /5 3] +… (*)

В этой сумме достаточно выписать лишь те члены, в которых у выражения в квадратных скобках числитель не меньше знаменателя.

Точно такие же рассуждения можно провести для нахождения соответствующей степени любого другого простого числа р . В частности, когда р = 2, получается выражение

[ n /2] + [ n /2 2] + [ n /2 3] +…

Ясно, что это выражение не меньше, чем выражение (*), т. е. в числе n ! каждому множителю 5 можно подобрать множитель 2. Таким образом, выражение (*) также дает и величину степени числа 10, делящей n ! которая равна числу нулей, стоящих в конечной части записи числа.

Примеры. n = 10, [10/5] = 2, [10/5 2] = 0, поэтому 10! оканчивается двумя нулями;

n = 31, [31/5] = 6, [31/5 2] = 1, [31/5 3] = 0, поэтому 31! оканчивается 7 нулями.

Система задач 4.4.

1. К (360, 1970) = 70 920, К (30, 365) = 2190.

2. К (220, 284)= 15620, K (1184, 1210) = 716 320, К (2620, 2924) =1 915 220, К (5020, 5564) = 6 982 820.

Система задач 5.2.

1. m = 8, n = 1: (16, 63, 65), n = 3: (24, 55, 73), n = 5: (80, 39, 89), n = 7: (112, 15, 113),

m = 9, n = 2: (36, 77, 85), n = 4: (64, 65, 97), n = 8: (144, 17, 145),

m =10, n = 1: (20, 99, 101), n = 3: (60, 91, 109), n = 7: (140, 51, 149), n = 9: (180, 19, 181).

2. Нет. Если

2 mn = 2 m 1 n 1, m 2— n 2= m 1 2— n 1 2, m 2+ n 2= m 1 2+ n 1 2,

то отсюда следовало бы, что

m 2= m 1 2, n 2= n 1 2 или m = m 1, n = n 1.

3. Если число с является величиной гипотенузы пифагорова треугольника, то произведение , где k — любое целое число, обладает теми же свойствами. Таким образом, достаточно рассмотреть лишь значения с ≤ 100, которые не имеют делителей и могут быть величиной гипотенузы. Соответствующие

[…]

Система задач 8.2.

2. Для с = 19 последние два члена в формуле (8.2.2) можно заменить числом 1, поскольку тогда [1/4 c ] — 2c ≡ 1 (mod 7).

Система задач 8.3.

1. 1:2:3:4:5:6:7:8

7:6:5:8:3:2:1:4

8:7:6:5:4:3:2:1

2:1:7:6:8:4:3:5

3:8:1:7:6:5:4:2

4:3:2:1:7:8:5:6

5:4:8:2:1:7:8:3

6:5:4:3:2:1:8:7

2. Когда r = 2, исключительный случай попадает на х = 1, следовательно, 1 играет с 8, а 8 играет с 1.

Для других значений х = 2, 3…, 7

y ≡ 2 — х ≡ 9 — х (mod 7),

т. е. соответственно у = 7, 6…, 2.

3. Команда N — 1 играет с

yr — ( N — 1) ≡ r (mod ( N — 1))

в r -м туре. Команда N — 1 может быть исключительной командой, если

2( N — 1) ≡ (mod ( N — 1)),

следовательно, r = N — 1 и тогда команда N — 1 играет с командой N .

4. Условие (8.3.2) симметрично относительно х и у r , когда х — обычная команда. Если х удовлетворяет условию (8.3.3), то эта команда играет с командой N и, по определению, команда N играет с командой х .

ЗАКЛЮЧЕНИЕ

Таково наше приглашение в теорию чисел. Если она заинтересовала вас и вы хотите познакомиться с ней поближе, то для этого следует прочесть какой-нибудь систематический курс теории чисел, например,

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Приглашение в теорию чисел»

Представляем Вашему вниманию похожие книги на «Приглашение в теорию чисел» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Приглашение в теорию чисел»

Обсуждение, отзывы о книге «Приглашение в теорию чисел» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x