Грубая прикидка подсказывает, что у этой функции перспективы сходимости лучше, чем у выражения (9.1). Вместо непрестанного прибавления чисел здесь мы по очереди то прибавляем, то вычитаем, так что каждое следующее число до некоторой степени сокращает вклад предыдущего. Так оно и выходит. Математики в состоянии доказать — хотя здесь мы этим заниматься не будем, — что этот новый бесконечный ряд сходится всегда, когда s больше нуля. Это существенное улучшение по сравнению с выражением (9.1), которое сходится, только когда s больше единицы.
Но какая нам от всего этого польза в отношении дзета-функции? Для начала заметим, что в силу элементарных алгебраических правил A − B + C − D + E − F + G − H + … равно (A + B + C + D + E + F + G + H + …) минус 2× (B + D + F + H + …) . Поэтому функцию η(s) можно переписать как
минус
Первая скобка — это, конечно, ζ(s) . Вторую скобку легко упростить, пользуясь 7-м правилом действий со степенями: (ab) n = a nb n . Таким же образом каждое из этих четных чисел можно разбить в произведение вида
, после чего можно вынести
в качестве множителя перед всей скобкой. А что останется в скобке? Там останется ζ(s) ! Коротко говоря,
или, переписав это «наоборот» и слегка причесав, получаем
Вот. Это означает, что если нам удастся узнать какое-то значение η(s) , то мы немедленно будем знать и значение ζ(s) . А поскольку можно узнать значения η(s) между 0 и 1, можно получить и значение ζ(s) в этом промежутке, несмотря на то что «официальный» ряд для ζ(s) там не сходится.
Пусть, например, s равно 1/ 2. Если сложить 100 членов ряда для η ( 1/ 2), то получится 0,555023639…; если сложить 10 000 членов, получится 0,599898768…. В действительности значение η ( 1/ 2) составляет 0,604898643421630370…. (Существуют определенные приемы позволяющие вычислять такое без необходимости сложения мириад членов.) Вооруженные всем этим, мы можем вычислить значение ζ ( 1/ 2) оно оказывается равным −1,460354508…, что выглядит очень правдоподобно, если судить по первому графику из приведенного выше набора.
Но задержимся на мгновение. Не устроили ли мы тут игру в наперстки с двумя бесконечными рядами, один из которых сходится при аргументе s = 1/ 2, а другой — нет? Ну, строго говоря, мы действуем не совсем по правилам, и я обошелся довольно безответственно с той математикой, на которой здесь все основано. Однако же я получил правильный ответ, причем этот фокус можно повторить для любого числа между нулем и единицей (не включая ее) и получить правильное значение для ζ(s) .
VI.
За исключением одного только s = 1, где ζ(s) не имеет значения, мы можем теперь предъявить значение дзета-функции для любого числа s , большего нуля. А как насчет аргументов равных нулю или меньших нуля? Вот здесь все по-настоящему круто. Один из результатов в работе Римана 1859 года состоит в доказательстве формулы, впервые предложенной Эйлером в 1749 году, которая выражает ζ( 1 − s) через ζ(s) . Таким образом, если мы желаем узнать, например, значение ζ (−15), то надо просто вычислить значение ζ (16) и подставить его в эту формулу. Это, правда, неслабая формула, и я привожу ее главным образом для полноты картин: [75]
Всюду здесь π — это магическое число 3,14159265…, sin — добрая старая тригонометрическая функция синус (от аргумента, выраженного в радианах), а знак «!» обозначает факториальную функцию, упоминавшуюся уже в главе 8.iii. В математике, изучаемой в старших классах, вы встречались только с факториальной функцией, аргументами которой являются положительные целые числа: 2! = 1×2, 3! = 1×2×3, 4! = 1×2×3×4 и т.д. В высшей математике, однако, есть способ определить факториальную функцию для всех чисел, кроме отрицательных целых, для чего применяется прием расширения области определения вполне в духе того, которым мы только что пользовались. Например, ( 1/ 2)! оказывается равным 0,8862269254… (на самом деле — половине квадратного корня из π ), (− 1/ 4)! = 1,2254167024… и т.д. Отрицательные целые создают проблемы в этой формуле, но это не критические проблемы, и я ничего о них говорить не буду. На рисунке 9.11 изображена полная факториальная функция для аргументов от −4 до 4.
Читать дальше