Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Здесь есть возможность читать онлайн «Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2010, ISBN: 2010, Издательство: Астрель: CORPUS, Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

  • Название:
    Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
  • Автор:
  • Издательство:
    Астрель: CORPUS
  • Жанр:
  • Год:
    2010
  • Город:
    Москва
  • ISBN:
    978-5-271-25422-2
  • Рейтинг книги:
    4 / 5. Голосов: 1
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Это доказательство появилось в 1896 году. Период, прошедший между выходом работы Римана и доказательством ТРПЧ, был отмечен следующими вехами.

• Вырос объем практических знаний о простых числах. Были опубликованы более длинные таблицы простых чисел, среди которых выделяются таблицы Кулика, представленные Венской академии наук в 1867 году, — там были приведены делители всех чисел до 100 330 200. Эрнст Майсель разработал хитрый способ вычисления π(x) — функции, которая считает количество простых чисел. В 1871 году он нашел правильное значение для π (100 000 000). В 1885 году он вычислил значение π (1000 000 000), которое оказалось на 56 меньше правильного результата (хотя это и обнаружили лишь 70 лет спустя).

• В 1874 году Франц Мертенс добился скромного результата, касающегося чисел обратных к простым, используя методы, которые заимствовали кое-что как у Римана, так и у Чебышева. Ряд 1/ 2+ 1/ 3+ 1/ 5+ 1/ 7+ 1/ 11+ 1/ 13+ … + 1/ p + … расходится, хотя и более медленно, чем гармонический ряд. Явно выписанная сумма ~ ln(ln p ).

• В 1881 году Дж. Дж. Сильвестр из Университета Джонса Хопкинса в Соединенных Штатах улучшил найденные Чебышевым границы отклонений (см. главу 8.iii) с 10 до 4 процентов.

• В 1884 году датский математик Йорген Грам опубликовал статью под названием «Исследования числа простых чисел, меньших данного числа» и получил за нее премию Датского математического общества. (Статья не содержала существенного прогресса, но заложила основы для полученных позднее результатов Грама, которые мы рассмотрим в должный момент.)

• В 1885 году голландский математик Томас Стилтьес заявил, что у него есть доказательство Гипотезы Римана. Подробности этой истории мы опишем чуть ниже.

• В 1890 году французская Академия наук объявила, что главная премия будет присуждена за работу по теме «Определение числа простых чисел, меньших заданной величины». Крайним сроком подачи работ на конкурс был июнь 1892 года. В объявлении было ясно сказано, что академия приветствует работу, которая прояснила бы некоторые доказательства, отсутствовавшие в работе Римана 1859 года. Молодой француз Жак Адамар направил статью о представлении некоторых классов функций в терминах их нулей. Риман опирался на подобный результат при выводе своей формулы для π(x) ; именно на этом (математические детали будут подробнее объяснены позже) зиждится связь между простыми числами и нулями дзета-функции, но Риман оставил этот результат без доказательства. Ключевые идеи Адамар взял из своей диссертации, которую защитил в том же году. Он и получил премию.

• В 1895 году немецкий математик Ханс фон Мангольдт доказал основной результат работы Римана, в котором утверждается связь между π(x) и дзета-функцией, и преобразовал его к более простому виду. Тогда стало ясно, что если бы была доказана некая теорема, намного более слабая, чем Гипотеза Римана, то применение ее к формуле фон Мангольдта дало бы доказательство ТРПЧ.

• В 1896 году два работавших назависимо математика — уже упомянутый Жак Адамар и бельгиец Шарль де ля Валле Пуссен — доказали этот более слабый результат и, следовательно, ТРПЧ.

Уже говорилось, что любой, кто бы ни сумел доказать ТРПЧ, тем самым снискал бы себе бессмертие. Это предсказание едва не сбылось: Шарль де ля Валле Пуссен умер за пять месяцев до своего 96-летия, а Жак Адамар — за два месяца до 98-летия. [79]Они не знали — по крайней мере, достаточно долго не знали, — что соревнуются друг с другом; и, поскольку оба они опубликовали свои результаты в один и тот же год, со стороны математиков было бы нечестно отдавать предпочтение кому-то одному из них за то, что он получил этот результат первым. Как и в случае восхождения на Эверест, они разделили славу.

Судя по всему, де ля Валле Пуссен опубликовался чуть раньше. Статья Адамара — она называлась Sur la distribution des zéros de la fonction ζ(s) et ses conséquences arithmétiques [80]— вышла в бюллетене Французского математического общества. Адамар добавил замечание о том, что он узнал о результате де ля Валле Пуссена, когда читал гранки своей статьи. И далее: «Однако я полагаю, что никто не сможет отрицать, что преимущество моего метода состоит в его простоте».

Этого никто никогда и не отрицал. Доказательство Адамара проще; из того факта, что он знал об этом до того, как его статья была напечатана, следует, что он не только слышал о результате де ля Валле Пуссена, но и имел возможность ознакомиться с ним. Однако поскольку их работы с очевидностью независимы, поскольку никогда не было ни малейшего намека на нечестную игру и поскольку и Адамар, и де ля Валле Пуссен были настоящими джентльменами, эти одновременные доказательства не стали причиной вражды или полемики. Я удовлетворюсь тем, что скажу, как говорит и весь математический мир: в 1896 году француз Жак Адамар и бельгиец Шарль де ля Валле Пуссен, работая независимо, доказали ТРПЧ.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.»

Представляем Вашему вниманию похожие книги на «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.»

Обсуждение, отзывы о книге «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x