Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Здесь есть возможность читать онлайн «Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2010, ISBN: 2010, Издательство: Астрель: CORPUS, Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

  • Название:
    Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
  • Автор:
  • Издательство:
    Астрель: CORPUS
  • Жанр:
  • Год:
    2010
  • Город:
    Москва
  • ISBN:
    978-5-271-25422-2
  • Рейтинг книги:
    4 / 5. Голосов: 1
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

42

Речь идет о «шестидесятилетнем цикле» — системе, основанной на комбинации десятеричного и двенадцатеричного циклов. Десятеричный цикл называется «Небесные стволы», а двенадцатеричный — «Земные ветви». Система также известна как «гань чжи» — букв. «стволы и ветви». (Примеч. перев.)

43

Что-то вроде «Сколько подарка ты получил?». Невозможность адекватного перевода попытаемся компенсировать следующей историей: когда сыну переводчика этой книги тоже было около 6 лет, он часто спрашивал «Сколько много?» вместо простого «сколько», а как-то раз, выучив в походе, что палатки бывают одноместные, двухместные и т.д., спросил: «Эта палатка какая местная?» (Примеч. перев.)

44

И шесть ртов людей. Определенная логика состоит в том, что, например, для плоских предметов (дверь, стол, лист бумаги…) используется одно счетное слово, а для длинных предметов (река, улица, веревка, рыба, ноги…) — другое (с исходным значением «лента»). (Примеч. перев.)

45

Обсуждающееся употребление во множественном или единственном числе можно сравнить (правда, поверхностно, а не по сути) с высказываниями типа «К нам поступила одна информация, потом еще две информации». (Примеч. перев.)

46

Характерно, что Вильям Ф. Бакли (1925-2008) был виднейшим публицистом, всю жизнь отстаивавшим консервативные политические ценности. Сейчас русскому читателю гораздо больше знаком его сын Кристофер Бакли, автор сатирических романов «Здесь курят» и «День бумеранга». (Примеч. перев.)

47

Русский язык, на котором образованные люди говорили в начале XX века, отчетливо демонстрировал тот же эффект в сочетании «третьего дня» (которое к настоящему моменту практически полностью вытеснилось некогда простонародным «позавчера»). (Примеч. перев.)

48

Английское издание: Uncle Petros and Goldbach's Conjecture. Bloomsbury USA, 2000. Роман впервые вышел на греческом в 1992 г. Как отмечает Доксиадис, в ясных математических терминах эту гипотезу впервые сформулировал Эйлер. (Роман переведен на все основные языки мира и имел успех более чем в 20 странах. Русский перевод: Доксиадис А. Дядя Петрос и проблема Гольдбаха, М.: ACT, 2002. — Примеч. перев.)

49

Относительно вещей типа гипотезы Гольдбаха и Последней теоремы Ферма вы могли бы сказать: «Но это же не арифметика, а теория чисел». Эти два понятия состояли друг с другом в интересных отношениях. Выражение «теория чисел» восходит по крайней мере к Паскалю (1654, в письме к Ферма), но до XIX столетия оно четко не отделялось от арифметики. Великий классический труд Гаусса по теории чисел назывался Disquisitiones Arithmeticae («Арифметические исследования», лат. ) (1801). По-видимому, в некоторый момент ближе к концу XIX века термин «арифметика» окончательно закрепился за основными действиями, изучаемыми в начальной школе, тогда как термин «теория чисел» стали использовать в отношении более глубоких изысканий профессиональных математиков. Затем, примерно в середине XX века, произошел поворот в обратном направлении. Быть может, все началось с вышедшей в 1952 г. книги Хэролда Девенпорта «Высшая арифметика», представлявшей собой блестящее популярное изложение серьезной теории чисел; ее заглавие, как эхо, стало время от времени употребляться в качестве синонима для «теории чисел», восходящей по крайней мере к 40-м гг. XIX века. А далее, в некоторый момент в 70-х гг. (тут я исхожу уже из собственных впечатлений), среди специалистов по теории чисел стало считаться особым шиком называть свою сферу деятельности просто «арифметикой». Книга Жана-Пьера Серра «Курс арифметики» (1973) представляет собой курс по теории чисел для старшекурсников и аспирантов, охватывающий такие предметы, как модулярные формы, p- адические поля, операторы Гекке, и (да!) дзета-функцию. Не могу сдержать улыбки, представляя себе сверхзаботливую мамашу, которая выбирает на полке эту книгу для своего третьеклашки, чтобы помочь ему освоить умножение столбиком.

50

Джордж Херберт Ли Мэлори — участник первых трех британских экспедиций к Эвересту. В июне 1924 г., при попытке осуществить первое в истории восхождение на Эверест, пропал вместе с напарником в верхней части северо-восточного гребня в ходе финальной стадии восхождения (или, возможно, уже на спуске). Тело Мэлори было обнаружено в 1999 г. Достигли они вершины или нет, остается загадкой. (Примеч. перев.)

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.»

Представляем Вашему вниманию похожие книги на «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.»

Обсуждение, отзывы о книге «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x