VII.
Итак, для вычисления суммы ∑ ρ Li(20 ρ ) мы сначала складываем каждый нуль дзета-функции с его зеркальным образом (т.е. с комплексным сопряжением) из южной половины плоскости аргумента. Далее эти пары надо сложить в порядке возрастания положительных мнимых частей. Таким образом, мы складываем нули в следующем порядке:
1/ 2+ 14,134725 i и 1/ 2− 14,134725 i ; затем
1/ 2+ 21,022040 i и 1/ 2− 21,022040 i ; затем
1/ 2+ 25,010858 i и 1/ 2− 25,010858 i ; затем ….
Чтобы посмотреть, что же получается в результате этого процесса, и разобраться в том, почему Риман назвал этот вторичный член «периодическими членами», поупражняемся немного в арифметике, используя конкретные значения буквы x . Как и раньше, возьмем x = 20; тем самым мы вычисляем величину J (20) — что, как несложно проверить из исходного определения функции J , равно 9 7/ 12т.е. 9,5833333…. Вот как это получается.
Сначала возводим 20 в степень 1/ 2+ 14,134725 i . В результате получаем точку, которая на рисунке 21.2помечена как 1 и численно выражается как −0,302303 − 4,46191 i . Интегральный логарифм от этого — т.е. функция Li — дает самую западную точку на рисунке 21.3, выражаемую числом −0,105384 + 3,14749 i . Теперь разберемся с сопряженным членом из этой пары нулей. Возводим 20 в степень 1/ 2− 14,134725 i . Результат равен −0,302303 + 4,46191 i . Он показан на средней картинке на рисунке 21.4. Это зеркальный образ точки, помеченной на рисунке 21.2как 1, относительно вещественной оси. Берем интегральный логарифм и получаем ответ −0,105384 − 3,14749 i — точку, лежащую глубоко на юге в правой части рисунка 21.4. Складывая два ответа, получаем −0,210768. Мнимые части, разумеется, сократились. Вот и все с первой парой сопряженных нулей.
Повторим все это для второй пары, 1/ 2+ 21,022040 i и 1/ 2− 21,022040 i . На этот раз окончательный ответ будет равен 0,0215632. Для третьей пары он равен −0,0535991. С тремя парами мы разобрались, но впереди бесконечность!
После 50 таких вычислений получаем (таблицу следует читать по колонкам):
Первое значение представляет собой некоторую аномалию, поскольку самая западная точка на рисунке 21.3отстоит от вертикальной оси более чем в два раза дальше, чем остальные. Однако затем числа в таблице уменьшаются по мере того, как значения, соответствующие северной половине критической прямой, по спирали приближаются к πi . И взгляните на их знаки — имеется примерно равное число положительных и отрицательных. [199]Это хорошая новость, потому что, хотя ответы и становятся меньше, они делают это не очень быстро, и нам потребуется вся возможная помощь, которую могут нам оказать сокращения между положительными и отрицательными значениями. Не будем забывать, что все это происходит под знаком суммы — эти 50 чисел предстоит еще сложить друг с другом. (Сумма равна −0,343864, что, кстати, составляет не более 8 процентов от полной бесконечной суммы. Не так плохо для всего лишь 50 слагаемых.)
Рисунок 21.5.Первые 50 значений, полученных путем взятия нетривиального нуля и его комплексно сопряженного, вычисления значений функции Li(20 z )и их последующего суммирования.
Из рисунка 21.5 видно, почему Риман назвал эти компоненты вторичного члена «периодическими». Они изменяются нерегулярным образом (что означает, если уж быть совсем скрупулезным, что они не строго «периодические», а только «колебательные») вверх и вниз от положительных к отрицательным значениям и обратно. [200]Причина этого совершенно ясна из рисунка 21.3. Колебательная природа вторичных членов связана с тем, что, как видно из рисунка 21.3, функция Li (x ρ) скручивает критическую прямую во все более и более плотную спираль. Значения функции, соответствующие нулям дзета-функции, могут при этом оказаться где угодно на этой спирали; определяющая причина состоит в том, что для больших x критическая прямая чрезвычайно сильно растягивается перед закручиванием. Закручивание настолько плотное, что высоко расположенный отрезок критической прямой отображается в нечто очень близкое по форме к окружности. В силу этого получается, что значения функции Li (x ρ) в нулях дзета-функции выглядят примерно как точки, раскиданные по окружности. Если вы немного знакомы с тригонометрией, то вам известно, что это приводит нас в мир синусов и косинусов, волновых функций, колебаний, вибраций… музыки. Именно отсюда и взялось введенное сэром Майклом Берри понятие «музыка простых чисел».
Читать дальше