А каковы решения уравнения z 2− 11 z + 28 = 0? Как мы видели в главе 17, это 4 и 7. При подстановке любого из этих чисел в левую часть уравнение превращается в верное равенство, поскольку левая часть оказывается равной нулю. Другой способ выразить то же самое — это сказать, что 4 и 7 являются нулями функции z 2− 11 z + 28.
Теперь, зная нули, мы можем разложить эту функцию на множители. Она разлагается на множители как ( z − 4)( z − 7). По правилу знаков это можно записать и как (4 − z )(7 − z ). Еще один способ записи — это 28(1 − z /4)(1 − z /7). Смотрите: так или иначе, мы выразили функцию z 2− 11 z + 28 через ее нули! Разумеется, такое можно делать не только для квадратичных функций. Многочлен пятой степени z 5− 27 z 4+ 255 z 3− 1045 z 2+ 1824 z − 1008 тоже можно записать через его нули (каковыми являются числа 1, 3, 4, 7, 12). Вот как: −1008(1 − z /1)(1 − z /3)(1 − z /4)(1 − z /7)(1 − z /12). Любую полиномиальную функцию можно переписать через значения ее нулей.
Полиномиальные функции обладают интересным свойством с точки зрения теории функций комплексной переменной. Область определения полиномиальной функции составляют все комплексные числа. Полиномиальная функция никогда не «обращается в бесконечность». Нет такого значения аргумента z , при котором оказалось бы невозможным вычислить ее значение. При вычислении значения полиномиальной функции для любого заданного значения аргумента используются только возведение аргумента в положительные целые степени, умножение этих степеней на числа и сложение полученных результатов друг с другом. Такое можно проделать со всяким числом.
Функции, область определения которых составляют все комплексные числа и которые ведут себя достаточно симпатичным образом (для чего имеется точное математическое определение!), называются целыми функциями. [195]Все полиномиальные функции — целые. Показательная функция — тоже целая. Однако рациональные функции, которые мы рассматривали в главе 17.ii, не целые, потому что знаменатели в них могут обращаться в нуль. Функция ln также не является целой: у нее нет значения при нулевом аргументе. Подобным же образом у дзета-функции Римана нет значения при аргументе, равном единице, а потому она не является целой функцией.
Целая функция может не иметь нулей вовсе (как, например, показательная функция: равенство e z = 0 никогда не выполняется), может иметь их несколько (как, например, полиномиальные функции: числа 4 и 7 — нули функции z 2− 11 z + 28), а может — бесконечно много (как, например, синус, который обращается в нуль при всех целых кратных числа π ). [196]Ну и раз полиномиальные функции выражаются через свои нули, интересно, можно ли все целые функции выразить подобным же образом? Пусть у нас есть какая-нибудь целая функция — назовем ее F , — определяемая бесконечной суммой вида F(z) = a + bz + cz 2 + dz 3 + … , и пусть еще нам удалось узнать, что у этой функции бесконечно много нулей; назовем их ρ, σ, τ, … . Можно ли выразить данную функцию через ее нули, в виде бесконечного произведения F(z) = а( 1 − z/ρ)( 1 − z/σ)( 1 − z/τ)… — как если бы бесконечная сумма была чем-то вроде «сверхмногочлена»?
Ответ таков: да, при определенных условиях можно. И когда такое удается сделать, получается, как правило, чрезвычайно полезная штука. Например, именно таким способом — применив подобное рассуждение к синусу — Эйлер и решил базельскую задачу.
Но какая нам польза от всего этого для дзета-функции, которая, увы, не является целой функцией? Дело в том, что в ходе упомянутой выше сложной процедуры обращения Риман преобразовал дзета-функцию в нечто слегка от нее отличающееся — в целую функцию, нули которой суть в точности нетривиальные нули дзета-функции. И эту-то слегка измененную функцию можно выразить через данные нули. (Тривиальные нули спокойно исчезли в ходе преобразования.)
Таким вот образом, после некоторой дополнительной обработки, в конце концов и получается выражение ∑ ρ Li (x ρ) , в котором сумму надо брать по всем нетривиальным нулям дзета-функции.
И теперь, чтобы продемонстрировать важность вторичного члена в выражении (21.1), а также связанные с ним проблемы, мы разберем его на части. Для этого начнем с его сердцевины и будем двигаться изнутри наружу, т.е. сначала рассмотрим x ρ , затем функцию Li, а потом уже — вопрос о суммировании по всем возможным значениям буквы ρ .
Читать дальше