Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Здесь есть возможность читать онлайн «Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2010, ISBN: 2010, Издательство: Астрель: CORPUS, Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

  • Название:
    Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
  • Автор:
  • Издательство:
    Астрель: CORPUS
  • Жанр:
  • Год:
    2010
  • Город:
    Москва
  • ISBN:
    978-5-271-25422-2
  • Рейтинг книги:
    4 / 5. Голосов: 1
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Вот из чего:

из главных членов −100,20254
из вторичных членов −29,37378
из членов с ln 2 0,03515
из интегральных членов −0,00799

Наибольший вклад в разницу дают главные члены. Однако эти члены вполне предсказуемы — они убывают быстро и неуклонно.

Разница, возникающая из вторичных членов, имеет тот же порядок величины, однако составляющие ее компоненты — те самые вторичные члены — вызывают куда больше беспокойства. Первый вторичный член достаточно велик и отрицателен; правда, нет никаких очевидных причин, почему он должен оказаться именно таким. Но и другие не очень помогают. Если просто двигаться вниз вдоль колонки с вторичными членами, не обращая внимания на знаки минус, а следя только за тем, будет ли каждый следующий член больше или меньше предыдущего по величине, то мы увидим такое: меньше, больше, меньше, меньше, больше, меньше, меньше, больше, меньше, меньше, больше, больше. Вторичный член при N = 19 оказывается почти таким же, как и при N = 6. Все эти вторичные члены — члены, которые выражаются через нули дзета-функции, — джокеры в нашем вычислении. А члены с ln 2, как и было обещано, несущественны.

Вспомним о статье Литлвуда 1914 года (см. главу 14.vii), где он доказал, что неверно утверждение, что Li (x) всегда превосходит π(x) . Это означает, что разность рано или поздно станет положительной. Поскольку главные члены очень быстро убывают по величине, а функция Мебиуса делает несколько первых из них отрицательными, включая и по-настоящему большие (при N = 2, N = 3 и N = 5), нелегко представить себе, как же эти главные члены вообще могут внести в разность какой-нибудь иной вклад, кроме как большое отрицательное число. Если в итоге разность должна оказаться положительной (а Литлвуд доказал, что такое рано или поздно случится), то это отрицательное число должно поглотиться большими, положительными, вторичными членами. Чтобы такое произошло, вторичные члены — нули дзета-функции — должны серьезным образом выйти из-под контроля. Судя по всему, так они и делают.

IX.

Чтобы еще глубже разобраться в смысле остаточного члена, снова взглянем на двойную спираль в правой части рисунка 21.4. Она представляет нам функцию Li( x критическая прямая) при x = 20. Критическая прямая — испещренная, если ГР верна, всеми нетривиальными нулями дзета-функции — отображается под действием функции Li(20 z ) в спираль. Что будет, если вместо 20 мы возьмем какое-нибудь большее значение х ? Какой вид примут соответствующие спирали?

Общее представление о том, что при этом происходит, дается на рисунке 21.7. Там представлены три функции: Li(10 крит. прямая), Li(100 крит. прямая) и Li(1000 крит. прямая). Во всех трех случаях показано, как отображается один и тот же отрезок критической прямой — отрезок от 1/ 2− 5 i до 1/ 2+ 5 i .

Рисунок 21.7.Li( x критическая прямая) при x = 10, 100 и 1000. Отображаемая часть критической прямой представляет собой отрезок от 1/ 2− 5 i до 1/ 2+ 5 i .

Как видно, при увеличении x от 10 до 100 и далее до 1000 происходят следующие явления.

• Спирали растут в размере, но при этом по-прежнему сходятся к тем же двум точкам −πi и πi .

• Отрезок критической прямой, который мы отображаем (длина его равна 10 единицам), все сильнее и сильнее растягивается, накручиваясь все большее и большее число раз вокруг точек −πi и πi .

• Верхняя и нижняя спирали приближаются друг к другу, «целуются» при каком-то значении x между 100 и 1000, а после этого пересекаются (спирали в действительности «целуются», когда x = 399,6202933538…).

Выбранный нами отрезок критической прямой слишком короткий для того, чтобы достичь первой пары нулей при 1/ 2± 14,134725 i . Поскольку сама прямая растягивается, а спирали при этом, наматываясь все более и более вокруг точек −πi и πi , растут в размере, возникает интересный вопрос. Не случится ли так, что растяжение прямой и намотка спиралей удержат нули дзета-функции на небольшом удалении от точек −πi и πi независимо от того, сколь сильно увеличились спирали? Ответ — нет; по мере роста x нули дзета-функции отображаются в точки, расположенные сколь угодно далеко. Когда ρ равняется первому нулю дзета-функции (это нуль при 1/ 2+ 14,134725 i ), а аргумент x достигает скромного триллиона, функция Li (x ρ) добирается до вещественных частей, превышающих 2200.

В главе 14.vii упоминался недавний результат, полученный Бейсом и Хадсоном, — первое литлвудово нарушение (когда π(x) впервые оказывается больше чем Li (x) ) происходит до, а весьма вероятно, что и при x = 1,39822×10 316. Представим себе, что нам надо повторить весь процесс, с помощью которого мы вычислили π (1000 000), но для указанного числа (назовем его числом Бейса-Хадсона) вместо 1000 000. Какая арифметика была бы тут задействована?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.»

Представляем Вашему вниманию похожие книги на «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.»

Обсуждение, отзывы о книге «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x