Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Здесь есть возможность читать онлайн «Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2010, ISBN: 2010, Издательство: Астрель: CORPUS, Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

  • Название:
    Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
  • Автор:
  • Издательство:
    Астрель: CORPUS
  • Жанр:
  • Год:
    2010
  • Город:
    Москва
  • ISBN:
    978-5-271-25422-2
  • Рейтинг книги:
    4 / 5. Голосов: 1
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Для полноты представления функции J на рисунке 19.3 изображен график J(x) при аргументах до 100. Самый маленький прыжок здесь совершается при x = 64 — это число представляет собой шестую степень (64 = 2 6), так что функция J прыгает при x = 64 на одну шестую.

Рисунок 193Еще о функции Jx Какую пользу может принести подобная функция - фото 128

Рисунок 19.3.Еще о функции J(x).

Какую пользу может принести подобная функция? Терпение, терпение. Сначала придется совершить один из тех логических скачков, о которых я предупреждал в начале главы.

IV.

Напоминаю в который уже раз, что у математиков есть масса способов обращать соотношения. Дали нам выражение для P через Q — отлично, посмотрим, не найдется ли способа выразить Q через P . В течение столетий в математике был развит целый инструментарий для того, чтобы совершать обращения, — он включает набор приемов для использования в самых разных условиях и обстоятельствах. Один из таких приемов носит название мебиусова обращения, и оно-то нам сейчас и нужно.

Не буду пытаться объяснить мебиусово обращение в общем виде. Оно описано в любом хорошем учебнике по теории чисел (см., например, раздел 16.4 в классической монографии «Теория чисел» Харди и Райта), а кроме того, поиск в Интернете наведет вас на множество ссылок. Подражая до некоторой степени самим функциям π и J , я вместо того, чтобы уныло тащиться от одной точки в моих рассуждениях к другой, перескочу сразу к следующему факту: применение мебиусова обращения к выражению (19.1)дает такой результат:

π(x) = J(x) − 1/ 2 J (√x) − 1/ 3 J ( 3√x) − 1/ 5 J ( 5√x) + 1/ 6 J ( 6√x) − 1/ 7 J ( 7√x) + 1/ 10 J ( 10√x) + …. (19.2)

Можно заметить, что некоторые члены (четвертый, восьмой, девятый) здесь отсутствуют. А из тех, что присутствуют, некоторые (первый, шестой, десятый) входят со знаком плюс, тогда как другие (второй, третий, пятый, седьмой) — со знаком минус. Ничего не напоминает? Здесь спрятана функция Мебиуса из главы 15. На самом деле

где 1x как и в других местах в книге есть конечно просто x Почему как - фото 129

(где 1√x как и в других местах в книге, есть, конечно, просто x ). Почему, как вам теперь кажется, это назвали мебиусовым обращением?

Итак, мы записали функцию π(x) , выразив ее через J(x) . Это чудесно, потому что Риман нашел способ, как выразить J(x) через ζ(x).

Прежде чем расстаться с выражением (19.2), надо еще упомянуть, что, подобно выражению (19.1), это не бесконечная сумма, а конечная. Это происходит из-за того, что функция J , как и функция π , равна нулю, когда x меньше 2 (взгляните на график!), а если последовательно извлекать корни из какого-нибудь числа, то результат рано или поздно упадет ниже 2 и там останется. Например,

π (100) = J (100) − 1/ 2 J (10) − 1/ 3 J (4,64…) − 1/ 5 J (2,51…) + 1/ 6 J (2,15…) − 0 + 0 + … = 28 8/ 15− 2 2/ 3− 5/ 6− 1/ 5+ 1/ 6,

что дает в точности число 25, которое и в самом деле является числом простых чисел меньших 100. Волшебство.

А теперь повернем Золотой Ключ.

V.

Вот Золотой Ключ, первое равенство в статье Римана 1859 года, полученное нами в главе 7, когда я убеждал вас, что это просто хитрый способ переписать решето Эратосфена:

He будем забывать что числа появляющиеся в правой части это в точности все - фото 130

He будем забывать, что числа, появляющиеся в правой части, — это в точности все простые числа.

Возьмем логарифм от обеих частей. Если что-то равно чему-то, то, конечно, и логарифм одного должен быть равен логарифму другого. Согласно 9-му правилу действий со степенями, которое гласит, что ln( a×b ) = ln а + ln b , получаем

Но поскольку ln 1 a ln a согласно 10му правилу это выражение равно - фото 131

Но, поскольку ln 1/ a = −ln a согласно 10-му правилу, это выражение равно

Теперь вспомним ряд сэра Исаака Ньютона для функции ln 1 x из главы 9vii - фото 132

Теперь вспомним ряд сэра Исаака Ньютона для функции ln (1 − x ) из главы 9.vii. Он пригоден при x , лежащем от −1 до +1, что, без сомнения, выполнено в нашем случае, поскольку s положительно. Поэтому каждый логарифм можно разложить в бесконечный ряд таким образом (19.3):

Это бесконечная сумма бесконечных сумм — с первого взгляда, я полагаю, подобное немного пугает, но в математике такие конструкции встречаются достаточно часто.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.»

Представляем Вашему вниманию похожие книги на «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.»

Обсуждение, отзывы о книге «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x