Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Здесь есть возможность читать онлайн «Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2010, ISBN: 2010, Издательство: Астрель: CORPUS, Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

  • Название:
    Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
  • Автор:
  • Издательство:
    Астрель: CORPUS
  • Жанр:
  • Год:
    2010
  • Город:
    Москва
  • ISBN:
    978-5-271-25422-2
  • Рейтинг книги:
    4 / 5. Голосов: 1
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

К этому Эндрю Одлыжко и приступил. Используя в качестве платформы для вычислений свободные процессорные мощности суперкомпьютера Cray в Белловских лабораториях [172](ограниченные, однако, пятичасовым интервалом для каждого этапа вычислений), он с высокой точностью (около 8 десятичных знаков) получил первые 100 000 нетривиальных нулей дзета-функции Римана, исходя из формулы Римана-Зигеля. Далее, чтобы составить какое-то представление о происходящем много выше по критической прямой, он получил еще 100 000 нулей, начиная с 1000 000 000 001-го. Затем он прогнал эти два множества нулей через разнообразные статистические тесты, чтобы сравнить их с собственными значениями матриц, представляющих ГУА-операторы. Результаты этой работы были опубликованы в 1987 году в знаменитой статье, озаглавленной «О распределении интервалов между нулями дзета-функции».

Результаты оказались не полностью убедительными. Как сам Одлыжко весьма деликатно выразился в своей статье, «все полученные к настоящему моменту данные довольно неплохо согласуются с предсказаниями модели ГУА». Получилось несколько больше малых интервалов, чем это предсказывала модель ГУА. Тем не менее результаты Одлыжко произвели достаточное впечатление, чтобы привлечь внимание исследователей из нескольких различных областей. Дальнейшая работа позволила прояснить ситуацию с несоответствиями, отмеченными в статье 1987 года, и «гипотеза Монтгомери о парных корреляциях» стала законом Монтгомери-Одлыжко. [173]

Закон Монтгомери-Одлыжко

Распределение интервалов между последовательными нетривиальными нулями дзета-функции Римана (в правильной нормировке) статистически тождественно распределению собственных значений ГУА-оператора.

О природе полученных Одлыжко результатов я могу рассказать лишь вкратце. С этой целью я воспроизвел их на своем персональном компьютере, используя список нулей, который Одлыжко любезно разместил на своем веб-сайте. [174]Чтобы избежать всяких аномалий, связанных с малыми значениями, я взял нули от 90 001-го до 100 000-го, если считать вверх по критической прямой от z = 1/ 2. Это составляет 10 000 нулей — вполне достаточно, чтобы извлечь из них некоторый статистический смысл. Нуль с номером 90 001 расположен в точке 1/ 2+ 68 194,3528 i , а 100 000-й нуль — в точке 1/ 2+ 74 920,8275 i (если округлять до 4 знаков после запятой). Итак, изучим статистические свойства последовательности из 10 000 вещественных чисел, которая начинается числом 68 194,3528, а заканчивается числом 74 920,8275.

Мы говорили в главе 13.viii, что по мере движения вверх по критической прямой нули делаются в среднем ближе друг к другу и поэтому необходимо внести поправку — растянуть верхнюю часть выбранного интервала. Это совсем не сложно сделать, умножив каждое число на его логарифм. У бóльших чисел бóльшие логарифмы, а это как раз и требуется для того, чтобы выровнять среднее расстояние между нулями. В этом и состоит смысл слова «нормировка» в приведенной выше формулировке закона Монтгомери-Одлыжко. Теперь наша последовательность начинается числом 759 011,1279 и заканчивается числом 840 925,3931.

Далее, нас интересуют относительные интервалы между нулями, поэтому можно вычесть 759 011,1279 из каждого числа в последовательности — это не повлияет на результат. Последовательность теперь идет от нуля до числа 81 914,2653. И наконец, просто для того, чтобы сделать числа покрасивее, перейдем к другому масштабу, поделив каждое число на 8,19142653. Это также не повлияет на относительные интервалы, ведь все, что мы сделали, — это сменили масштаб. В этом окончательном виде наша последовательность начинается такими числами: 0, 1,2473, 2,5840 и т.д., а заканчивается числами 9 997,3850, 9 999,1528, 10 000.

Если включить значения на концах, то перед нами будет 10 000 приготовленных для исследования чисел, простирающихся от 0 до 10 000. Поскольку имеется 9999 интервалов между последовательными числами, средний интервал равен 10 000 : 9999, что лишь совсем чуть-чуть больше единицы.

Теперь можно задавать статистические вопросы. Например: как именно интервалы отклоняются от среднего? Сколь многие из них имеют длину меньше единицы? [175]Ответ: 5 349. У скольких из них длина больше 3? Ни у одного. Этот результат радикально отличается оттого, что получается из идеально случайного разброса [176], где эти числа соответственно равны 6 321 и 489. Это подтверждает те выводы, которые можно извлечь из рисунков 18.2и 18.3. Наши нули не разбросаны случайным образом. Они более многочисленны вблизи среднего интервала (который слегка превышает 1), и при этом имеется острая недостача интервалов малой или большой величины.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.»

Представляем Вашему вниманию похожие книги на «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.»

Обсуждение, отзывы о книге «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x