Коэффициенты многочленов не обязаны быть целыми. На самом деле можно позабавиться, сделав их элементами из конечного поля, такого как рассмотренное выше поле F 2. В качестве примера сложения, которое при этом получается, имеем
(При проверке этого равенства надо помнить, что в поле F 2выполнено 1 + 1 = 0, а потому x + x = 0, x 2 − x 2 = 0 и т.д.) Это поле будет называться полем рациональных функций над F 2. В нем, разумеется, бесконечно много элементов; лишь коэффициенты ограничены своей принадлежностью к конечному полю. Таким образом, можно использовать конечное поле для построения бесконечного. Заметим еще, что, поскольку 1 + 1 = 0, это поле имеет характеристику 2. Следовательно, и бесконечные поля могут иметь конечную характеристику.
Не имеет особого смысла спрашивать, что собой представляет x в последних двух примерах. Это символ, для манипуляций с которым у нас имеются строго определенные правила. С алгебраической точки зрения главное в этом и состоит. На самом деле почти наверняка ответ на данный вопрос звучит как « x представляет собой число». Однако алгебраисты куда больше интересуются тем, какого типа это число — каким семействам, каким группам, каким полям оно принадлежит и какие правила манипуляций с ним выполнены. Для аналитика же наше число а + b √2 не слишком интересно. «Это просто вещественное число», — скажет аналитик. — «Ладно, алгебраическое число» (см. главу 11.ii), — если на него надавить. Но для алгебраиста, однако, оно представляет особый интерес постольку, поскольку относится к некоторому полю. Вообще алгебраисты и аналитики рассматривают не столько разные вещи, сколько аспекты одной и той же вещи. [159] {A8}
III.
Краткий взгляд на размах, мощь и красоту теории алгебраических полей — это все, на что нам здесь хватает места, хотя мы и вернемся ненадолго к полям, рассмотрев их под другим углом зрения в главе 20.v. Я привел здесь этот краткий обзор алгебраических сведений, потому что в 1921 году Артин в своей диссертации, которую он защищал в Лейпцигском университете, применил теорию полей для развития нового подхода к Гипотезе Римана. Соответствующий математический аппарат достаточно серьезен, и я расскажу о нем лишь очень бегло.
Как уже упоминалось в предыдущем разделе, для всякой степени p N простого числа имеется конечное поле. Мы также видели, как конечное поле можно использовать в качестве основы для построения других полей, в том числе бесконечных. Оказывается, что если начать с конечного поля, то имеется способ таким образом построить эти поля-«расширения», что с ними будет связана некоторая дзета-функция. Под «некоторой дзета-функцией» здесь понимается функция комплексного аргумента, определенная над полем комплексных чисел и по целому ряду своих свойств необъяснимым образом напоминающая дзета-функцию Римана. Например, эти аналоги римановой дзета-функции снабжены своим собственным Золотым Ключом — своей собственной эйлеровой формулой произведения, а также своей собственной Гипотезой Римана. [160]
В 1933 году работавшему в Магдебургском университете в Германии Хельмуту Хассе удалось для определенной категории полей доказать результат, аналогичный Гипотезе Римана. В 1942 году Андре Вейль [161]распространил это доказательство на гораздо более широкий класс объектов, а затем предположил — в знаменитых трех «гипотезах Вейля», — что подобные результаты должны иметь место для еще более широкого класса. В 1973 году бельгийский математик Пьер Делинь получил сенсационное достижение, принесшее ему Филдсовскую премию, — он доказал гипотезы Вейля, тем самым, по существу, завершив программу исследований, начало которой положил Артин.
Неизвестно, в какой степени методы, развитые для доказательства аналогов Гипотезы Римана, относящихся к столь замысловатым полям, пригодны для доказательства классической Гипотезы Римана. Но очень многие считают, что вполне пригодны, и данная область остается очень активным направлением в исследовании Гипотезы Римана.
Ведут ли эти исследования куда-нибудь? Это не ясно — по крайней мере, мне не ясно. По поводу существа дела обратимся снова ко второму абзацу в этом разделе, где говорилось, что с полями определенного вида связаны аналоги дзета-функции. Для классической дзета-функции — той, о которой говорится в исходной Гипотезе Римана и которой главным образом и посвящена данная книга, — полем такого вида будет Q, поле обычных рациональных чисел. По мере развития исследований в последние десятилетия выяснилось, что элементарное поле рациональных чисел Qв некотором смысле глубже и более своенравно, нежели «искусственно выведенные» поля, к которым применимы результаты Артина, Вейля и Делиня. Но с другой стороны, методы, развитые для обращения с этими «искусственными» полями, оказались достаточно мощными — Эндрю Уайлс использовал их для доказательства Последней теоремы Ферма!
Читать дальше