Карл Зигель, кстати, не был евреем, и его напрямую не задевали ограничительные законы в начальный период нацизма. Однако он не терпел нацистов и уехал из Германии в 1940 году, начав работать в Институте высших исследований в Принстоне. Он вернулся в Германию в 1951 году и завершил карьеру в качестве профессора в том самом Геттингене, где за двадцать лет до того архивы позволили ему увидеть, как яркую вспышку, невероятную мощь ума, скрывавшегося за тихой застенчивостью Бернхарда Римана.
Глава 17. Немного алгебры
I.
Этой книге следовало бы содержать куда больше алгебры, чем в конце концов в ней оказалось. Мы уделяли основное внимание Бернхарду Риману и его работе о простых числах и дзета-функции. Эта работа относится к теории чисел и анализу, и поэтому в нашем рассказе преобладали именно эти темы. Однако современная математика, как уже отмечалось, стала довольно алгебраической. В данной главе читателю предлагаются алгебраические сведения, которые могут потребоваться для понимания двух важных подходов к Гипотезе Римана.
Как и главы 7 и 15, эта глава состоит из двух частей. В разделах II и III обсуждаются основы теории полей, а оставшаяся часть главы посвящена теории операторов. Теория полей важна потому, что она уже позволила доказать нечто, сильно напоминающее Гипотезу Римана. Многие исследователи полагают, что теория полей предлагает наиболее многообещающее направление исследования исходной, классической Гипотезы Римана. Теория операторов приобрела важность после знаменательных и даже романтических событий, о которых будет рассказано в следующей главе. [157]Но сначала о теории полей.
II.
B математике слово «поле» имеет весьма конкретный смысл. Множество элементов образует поле, если эти элементы можно складывать, вычитать, перемножать и делить в согласии с обычными правилами арифметики — например, с правилом a×(b + c) = ab + ac. Результаты всех этих действий должны оставаться в поле.
Например, Nне является полем. Если попробовать из 7 вычесть 12, то получится результат, не лежащий в N. Аналогично обстоит дело и с Z— если поделить 12 на 7, то ответ не будет лежать в Z. Это не поля.
Но Q, Rи C— поля. Если складывать, вычитать, перемножать или делить друг на друга два рациональных числа, то получится другое рациональное число. То же самое с вещественными и комплексными числами. Они дают нам три примера поля. Ясно, что каждое из этих полей содержит бесконечное число элементов.
Несложно построить и другие бесконечные поля. Рассмотрим семейство всех чисел вида а + b √2, где a и b — рациональные числа. Здесь b или равно нулю, или нет. Если b не равно нулю, то, поскольку число √2 не является рациональным, число а + b √2 также не рациональное. Следовательно, это семейство содержит все рациональные числа (при нулевом b ) и тучу весьма специальных иррациональных. Такие числа образуют поле. Сложение числа а + b √2 с числом c + d √2 дает (a + c) + (b + d) √2, их вычитание дает (a − c) + (b − d) √2, результат умножения есть (ac + 2 bd) + (ad + bc) √2, а деление с использованием приема, подобного тому, который применяется при делении комплексных чисел, приводит к (ac − 2bd)/(c 2 − 2d 2) + ((bc − ad)/(c 2 − 2d 2)) √2. Поскольку a и b могут быть вообще любыми рациональными числами, в этом поле бесконечно много элементов.
Поля не обязательно бесконечны. Простейшее из всех полей содержит всего два элемента, 0 и 1. Таблица сложения имеет вид 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 0. Таблица вычитания такова: 0 − 0 = 0, 0 − 1 = 1, 1 − 0 = 1, 1 − 1 = 0. (Можно заметить, что получающиеся результаты таковы же, как для сложения. В данном поле любой знак минус можно спокойно заменить знаком плюс!) Таблица умножения: 0×0 = 0, 0×1 = 0, 1×0 = 0, 1×1 = 1. Таблица деления: 0:1 = 0, 1:1 = 1, а деление на нуль запрещено. (Делить на нуль нельзя никогда.) Это абсолютно нормальное, а вовсе не тривиальное поле, и мы очень скоро не преминем им как следует воспользоваться. Математики называют его полем F 2.
На самом деле конечное поле можно построить для любого простого числа р и даже для любой степени любого простого числа. Если p — простое число, то имеется конечное поле из p элементов, поле из p 2элементов, поле из p 3элементов и т.д. Более того, мы только что перечислили все возможные конечные поля. Их можно организовать в список: F 2, F 4, F 8, …, F 3, F 9, F 27, …, F 5, F 25, F 125, …; выписав их все, мы тем самым перечислим все возможности построения конечных полей.
Читать дальше