Постоянная Планка и так называемая планковская длина измеряются в различных единицах, а потому их нельзя непосредственно сравнивать. (Постоянная Планка измеряется в Дж/с, а планковская длина, как и полагается длине, в метрах.) Планковская длина, однако, «содержит» в себе постоянную Планка: она построена из фундаментальных физических констант (самой постоянной Планка, а также скорости света и гравитационной постоянной) таким образом, чтобы получилась именно длина. Известные численные значения фундаментальных констант и дают значение 10 −35 м. «Малость» этой величины определяется в том числе и малостью постоянной Планка. (Примеч. перев.)
Если не считать осложнений с той последней, пятнадцатой, компонентой, оставшейся неучтенной (см. выше). Ее некуда было пристроить. (Примеч. перев.)
Наука не стоит на месте. Есть — и используются — также симметрии с более хитрой алгебраической структурой. (Примеч. перев.)
Квантовая электродинамика, как видно уже из названия, соединяет в себе идею о квантовании и электродинамику. Про теорию относительности она ничего нового не говорит, поскольку «относительность» уже встроена внутрь максвелловской (т.е. неквантовой, классической) электродинамики именно в виде симметрии относительно группы Лоренца, о которой говорится в следующем абзаце. В классической электродинамике имеются и Лоренцева, и калибровочная симметрии. Задача квантовой электродинамики, повторимся, состояла в перенесении описания электромагнетизма (с сохранением данных симметрий) в квантовую область. (Примеч. перев.)
Серьезная путаница. При калибровочных преобразованиях фаза световой (электромагнитной) волны остается неизменной. Фазовые преобразования в электродинамике относятся не к свету, а к полю, описывающему частицы, которые излучают и поглощают свет (например, электроны и позитроны). Имеющуюся в этом поле «фазу» роднит с фазой электромагнитной волны лишь название. Смысл же калибровочной инвариантности состоит в том, что если в каждой точке пространства произвольным образом изменить фазу электрон-позитронного поля, то найдется компенсирующее преобразование электромагнитного поля. (Этот факт не может, кроме того, следовать из аргументов, неожиданно привлекающих к рассмотрению галактику Андромеда.) (Примеч. перев.)
Квантовая хромодинамика сама по себе не является какой-либо объединенной теорией. Она описывает сильные взаимодействия. (Примеч. перев.)
Все же атомы представляют собой единое целое благодаря электромагнитному притяжению между электронами и находящимися в ядре протонами. Атомные ядра существуют — являются стабильными или квазистабильными образованиями — благодаря сильным взаимодействиям между протонами и нейтронами. Деление ядер высвобождает часть энергии сильных взаимодействий, которые в случае реализации цепной реакции имеют в качестве довольно непосредственных проявлений атомную бомбу и Солнце. (Примеч. перев.)
Около 10 −18 м, что примерно в 1000 раз меньше диаметра атомного ядра . Для «истории симметрии» может показаться интересным, что при ядерных превращениях, обусловленных слабым взаимодействием, нарушается зеркальная симметрия — симметрия между правым и левым. (Примеч. перев.)
Сама идея о «размазанности» электрона — это уже интерпретация некоторого квантово-механического факта, имеющего отношение к вероятности. А не наоборот. (Примеч. перев.)
Речь идет главным образом об атомных ядрах, а не о самих атомах. (Примеч. перев.)
Это обсуждалось в главе 12. (Примеч. перев.)
«Нечетные» — частицы со спином, выражающимся как нечетное кратное спина электрона; «четные» — со спином, выражающимся как четное кратное спина электрона. (Примеч. перев.)
Часть фразы про отрицательные спины лучше всего полностью проигнорировать. (Примеч. перев.)
Шифрованный роман Джеймса Джойса. (Примеч. перев.)
Подразумевается, что кварки участвуют в сильном взаимодействии. Причина же, по которой кварк и антикварк не аннигилируют, состоит вовсе не в этом, а просто в том, что складывающиеся из них частицы включают кварки и антикварки другого аромата, которые просто не являются античастицами друг для друга, а потому и не аннигилируют. (Примеч. перев.)
Читать дальше