За 1-й час сторожу следовало 1 яблоко, за 2-й час – 2 яблока, за 3-й – 4 яблока, за 4-й – 8, за 5-й – 16, за 6-й – 32, за 7-й – 64, за 8-й – 128, за 9-й – 256, за 10-й – 512.
Пока еще вознаграждение как будто не грозит арендатору разорением: за первые 10 часов сторожу причиталось всего около тысячи яблок.
Но будем продолжать исчисление.
За 11-й час сторожу следовало 1024 яблока, за 12-й – 2048, за 13-й – 4096, за 14-й – 8192, за 15-й – 16384.
Число яблок накопляется внушительное, но все же это далеко от трех тысяч возов.
Дальше.
За 16-й час уже следовало 32768 яблок.
За 17-й час следовало 65536 яблок.
За 18-й час следовало 131072 яблок.
За 19-й час следовало 262144 яблок.
За 20-й час следовало 524288 яблок.
Арендатор уже должен сторожу свыше миллиона яблок. Но сутки не копчены – остается еще 4 часа.
За 21-й час надо было уплатить 1048576 яблок.
За 22-й час следовало 2097152 яблок.
За 23-й час следовало 4194304 яблок.
За 24-й час следовало 8388608 яблок.
Теперь остается сложить все эти числа от 1 до 8388608. Составится 16777215 яблок. Итак, сторожу за одни сутки следовало, согласно уговору, почти 17 миллионов яблок! Чтобы только пересчитать такое число яблок по одному в секунду, понадобилось бы полгода непрерывного счета! Полагая по 10 яблок на килограмм, получаем, что все причитающиеся сторожу яблоки должны были весить 1677721 килограмм, или 1677 тонн.
Это составило бы вагонов 80, груженных яблоками, или – считая по полтонны на воз – свыше 3000 возов.
Не правда ли, можно было найти сторожа и подешевле?
Решение задачи № 62
Крестьянка остановила поезд тем, что смазала маслом рельсы впереди паровоза. По скользким рельсам не могут катиться колеса паровоза; они вертятся на одном месте, но не катятся вперед, так как нет трения, благодаря которому колеса словно цепляются за рельсы. Вспомните, как трудно ходить по гладкому льду: ноги скользят, не находя опоры, и мы не можем сдвинуться с места. По той же причине не может сдвинуться и паровоз на скользких рельсах.
Когда же машинист уплатил долг, крестьянка «сняла колдовство», посыпав смазанные рельсы песком.
История эта, конечно, могла произойти только в давнее время; на современных паровозах имеются особые песочницы, из которых машинист с помощью особого приспособления высыпает песок на рельсы, когда они становятся скользкими, например, от дождя.
Решение задачи № 63
Задача решалась бы очень просто, если бы было сказано, сколько времени понадобилось шмелю на перелет из сада в родное гнездо. Этого в задаче не сказано, – но геометрия поможет нам самим узнать это.
Рис. 66.
Начертим путь шмеля. Мы знаем, что шмель летел сначала «прямо на юг» в течение 60-ти минут. Затем он летел 45 минут «на запад», т. е. под прямым углом к прежнему пути. Оттуда «кратчайшей дорогой», т. е. по прямой линии – обратно к гнезду. У нас получился прямоугольный треугольник ABC, в котором известны оба «катета», АВ и ВС, и надо определить третью сторону – «гипотенузу» АС.
Геометрия учит, что если какая-нибудь величина содержится в одном катете 3 раза, а в другом – 4 раза, то в третьей стороне – гипотенузе – та же величина должна содержаться ровно пять раз. Например, если катеты треугольника равны 3 и 4 метрам, то гипотенуза = 5 м; если катеты 9 и 12 километров, то третья сторона = 15 км и т. п. В нашем случае один катет 3x15 мин. пути, другой – 4x15 мин. пути; значит, гипотенуза АС = 5x15 минут пути. Итак, мы узнали, что из сада к гнезду шмель летел 75 минут, т. е. 1 1/4 часа.
Рис. 67.
Теперь легко уже подсчитать, сколько времени пробыл шмель в отсутствии. На перелеты он употребил времени:
1 час + 3/4 часа + 1 1/4часа = 3 часа.
На остановки у него ушло времени:
1/2 часа + 1 1/2 часа = 2 часа.
Итого: 3 часа + 2 часа = 5 часов.
Решение задачи № 64
Поверхность крышки равна произведению длины ящика на его ширину; поверхность боковой стенки = высоте x ширину; поверхность передней стенки = высоте x длину. Следовательно, мы знаем, что
длина x ширину = 120
высота x ширину = 80
высота x длину = 96.
Перемножим первые два равенства. Получим:
длина x высоту x ширину x ширину = 120x80.
Разделим это новое равенство на 3-е:
Сократив дробь и произведя действия, имеем:
ширина x ширину = 100.
И следовательно, ширина ящика = 10 см.
Зная это, легко определить, что высота ящика =
80/10 = 8 см, а длина = 96/8 = 12 см.
Решение задачи № 65
Вы не решите этой простой задачи, если не уясните себе сначала, из чего составляется длина цепи. Всмотритесь в чертеж:
Рис. 68.
Вы видите, что длина натянутой цепи составляется из полной ширины первого звена, к которой, с присоединением каждого нового звена, прибавляется не полная ширина звена, а ширина без двойной толщины звена.
Читать дальше
Конец ознакомительного отрывка
Купить книгу