Теперь перейдем к нашей задаче.
Мы знаем, что одна цепь длиннее другой на 14 сантиметров и имеет на 6 звеньев больше ее. Разделив 14 на 6, мы получаем 2 1/3. Это и есть ширина одного звена, уменьшенная на двойную его толщину. Так как толщина кольца известна – полсантиметра, – то, следовательно, полная ширина каждого звена = 2 1/3 + 1/2 + 1/2 = 3 1/3 сантиметра.
Теперь легко определить, из скольких звеньев состояла каждая цепь. Из чертежа видно, что если мы отнимем от 36-сантиметровой цепи двойную толщину первого звена, т. е. 1сантиметр, и остальное разделим на 2 1/3, то получим число звеньев в этой цепи:
35 : 2 1/3 = 15.
Точно так же узнаем число звеньев в 22-сантиметровый цепи:
21 : 2 1/3 = 9.
Решение задачи № 66
Мельник начал с того, что сложил все 10 чисел. Полученная сумма, 1156 килограммов, – не что иное, как учетверенный вес мешков: ведь в нее вес каждого мешка входит 4 раза. Разделив на 4, узнаем, что все пять мешков вместе весят 289 килограммов.
Теперь для удобства обозначим мешки, в порядке их веса, номерами. Самый легкий мешок – это № 1, второй по тяжести – № 2 и т. д.; самый тяжелый мешок – № 5. Нетрудно сообразить, что в ряде чисел: 110 кг, 112 кг, 113 кг, 114 кг, 115 кг, 116 кг, 117 кг, 118 кг, 120 кг, 121 кг – первое число составилось из веса двух самых легких мешков: № 1 и № 2; второе число – из веса № 1 и № 3. Последнее число составилось на веса двух самых тяжелых мешков № 4 и № 5, а предпоследние – из № 3 и № 5. Итак:
№ 1 и № 2 вместе весят 110 кг
№ 1 и № 3 вместе весят 112 кг
№ 3 и № 5 вместе весят 120 кг
№ 4 и № 5 вместе весят 121 кг
Легко узнать, следовательно, сумму весов № 1, № 2, № 4 и № 5: она равна 110 кг + 121 кг = 231 кг. Вычтя это число из общей суммы веса всех мешков (289 кг), получаем вес мешка № 3, именно – 58 килограммов.
Дальше, из суммы веса мешков № 1 и № 3, т. е. из 112, вычитаем известный уже нам вес мешка № 3; получается вес мешка № 1: 112 кг – 58 кг = 54 кг.
Точно так же узнаем вес мешка № 2, вычтя 54 кг из 110 кг, т. е. из суммы веса мешков № 1 к № 2. Получаем: вес мешка № 2 равен 110 кг – 54 кг = 56 кг.
Из суммы весов мешков № 3 и № 5, т. е. из 120 вычитаем вес мешка № 3, который равен 58 кг; узнаем, что мешок № 5 весит 120 кг – 58 кг = 62 кг.
Остается определить вес мешка № 4 из суммы № 4 и № 5, т. е. из 121 кг. Вычтя 62 из 121, узнаем, что мешок № 4 весит 59 кг.
Итак, вот вес мешков:
54 кг, 56 кг, 58 кг, 59 кг, 62 кг.
Решение задачи № 67
Мы знаем, что Володя вдвое старше Жени, а Надя и Женя вместе вдвое старше Володи. Значит, годы Нади и Жени вместе вчетверо больше, чем годы Жени. Отсюда прямо следует, что
Надя старше Жени в 3 раза.
Далее, мы знаем, что сумма лет Алеши и Володи вдвое больше суммы лет Нади и Жени. Но возраст Володи есть удвоенный возраст Жени, а годы Нади и Жени вместе есть учетверенный возраст Жени. Следовательно, годы Алеши + удвоенный возраст Жени = 8-кратному возрасту Жени. То есть:
Алеша старше Жени в 6 раз.
Наконец, нам известно, что сумма возрастов Лиды, Нади и Жени равна сумме возрастов Володи и Алеши.
Имея перед глазами табличку:
Лиде – 21 год.
Надя – в 3 раза старше Жени,
Володя – в 2 раза старше Жени,
Алеша – в 6раз старше Жени, мы можем сказать, что 21 год + утроенный возраст Жени + возраст Жени = 4-кратному возрасту Жени + 12-кратному возрасту Жени.
Или: 21 год + 4-кратный возраст Жени = 16-кратному возрасту Жени.
Значит, 21 год = 12-кратному возрасту Жени и, следовательно, Жене 21/12 = 1 3/4 года.
Теперь уже легко определить, что Володе 3 1/2 года, Наде – 5 1/4 и Алеше – 10 1/2 лет.
Решение задачи № 68
Для ясности нарисуем рядом две свечи – толстую, ко – торая может сгореть в 5 часов, и тонкую, которая может сгореть в 4 часа. Заштрихуем те части обеих свечей, которые сгорали, огарки же оставим незаштрихованными. Легко сообразить, что длина сгоревшей части тонкой свечи должна составлять 5/4 длины сгоревшей части толстой свечи; другими словами, заштрихованный избыток тонкой свечи составляет по длине 1/4 сгоревшей части толстой свечи. Но в то же время длина этого избытка = 3/4 длины толстого огарка. Другими словами, мы узнали, что 3/4 длины толстого огарка равна 1/4 длины сгоревшей части толстой свечи. Значит, 4/4 его (т. е. весь огарок) составляет 1/4 x 4/3 = 1/3 толстой свечи.
Итак, огарок толстой свечи составляет 1/3 сгоревшей части или 1/4 всей длины свечи. Сгорело, следовательно, 3/4 толстой свечи. А так как вся свеча могла сгореть в 5 часов, то 3/4 ее горело в продолжение (5x3)/4 = 15/4 = 3 3/4 часа.
Ответ: свечи горели 3 3/4 часа.
Решение задачи № 69
Каждый ученик или ученица ежедневно раскланивались со всеми остальными школьниками и с заведующим. С самим собою, конечно, не раскланивались, зато делали поклон заведующему, так что каждый школьник и школьница делали ежедневно столько поклонов, сколько было детей в школе. Значит, все дети вместе делали ежедневно столько поклонов, сколько составится от умножения их общего числа самого на себя.
Читать дальше
Конец ознакомительного отрывка
Купить книгу