Еще одно ошибочное понятие, связанное с законом больших чисел, состоит в следующем: событие произойдет с большей или меньшей вероятностью по той причине, что за последнее время оно происходило или не происходило. Представление о том, что шансы на событие с постоянной вероятностью возрастают или снижаются в зависимости от того, имело ли событие место в недавнем прошлом, называется заблуждением игрока. Предположим, Керрич подбрасывает монету, выпадает 44 орла на 100 бросков, но ведь монета не будет стремиться к решкам, чтобы сравнять их с орлами. Вот что лежит в основе таких идей, как «удача отвернулась от нее» и «ему везет». Так не бывает. Если на то пошло, полоса везения долго не продлится, а вот полоса невезения, к сожалению, совсем не означает скорого возвращения удачи. И все же заблуждение игрока затрагивает гораздо больший круг людей, чем может показаться, даже если и не на уровне сознательном, то на подсознательном уж точно. Люди ждут, что неудача сменятся удачей, либо беспокоятся, что за везением обязательно последует невезение.
Помнится, несколько лет назад во время круиза я наблюдал за одним энергичным толстяком, который в поте лица совал и совал доллары в прорезь игрального автомата — машина едва успевала заглатывать банкноты. Его спутник заметил, что я смотрю на толстяка, и произнес всего два слова: «Ему везет». Хотя меня так и подмывало ответить, что вовсе даже ему и не везет, я пошел дальше. Сделав всего несколько шагов, я замер: вдруг замигали лампочки и что-то зазвенело, причем этот звон вовсе не походил на мелодичные трели, которые раздавались из автомата тех двоих. Затем я услышал звук быстро высыпающихся монет, которые, как мне показалось, сыпались не одну минуту — они резво вылетали из игрального автомата. Теперь я знаю, что современные игральные автоматы запрограммированы, выигрыш зависит от генератора случайных чисел, который и по закону, и по своим настройкам действительно должен генерировать, как трубят об этом в рекламе, случайные числа, так что каждый нажим на ручку игрального автомата не зависит от всех предыдущих. И все же… Скажу только, что заблуждение игрока — большая иллюзия.

Рукопись, в которой Бернулли изложил свою «золотую теорему», вдруг обрывается, хотя выше автор и обещает написать приложение, в котором будут примеры юридического и экономического характера. Похоже, «Бернулли вдруг бросил все, когда увидел число 25 550», написал историк статистики Стивен Штиглер {100} 100 Stigler, The History of Statistics, p. 77.
. На самом же деле рукопись Бернулли уже была в печати, когда в августе 1705 г. он умер «от бруцеллеза», дожив до пятидесяти лет. Издатели обратились к Иоганну Бернулли с просьбой закончить рукопись, но Иоганн сказался занятым. Это может выглядеть странным, однако странностей в семействе Бернулли хватало. Если бы пришлось выбрать из всех когда-либо живших математиков человека самого неприятного, можно было бы смело назвать Иоганна Бернулли. В исторических текстах его неоднократно изображали завистливым, тщеславным, обидчивым, упрямым, раздражительным, хвастливым, нечестным, да к тому же еще и изощренным лжецом. Он многого добился в математике, однако известен также и тем, что выгнал своего сына Даниила из Академии наук, когда тот получил награду, за которую боролся сам. А еще тем, что попытался украсть идеи как своего брата, так и Лейбница, что приписал работу по гидродинамике сына Даниила себе, после чего подделал дату публикации, дабы получилось так, будто его печатный труд вышел раньше.
К тому времени, как его попросили завершить труд умершего брата, он уже некоторое время работал в Базеле, переехав из Гронингенского университета в Нидерландах и занимая место профессора не математики, а древнегреческого. Якобу такие перемены в карьере брата показались подозрительными, особенно потому, что по его представлениям Иоганн древнегреческого не знал. Якоб написал Лейбницу о своих подозрениях: Иоганн якобы приехал в Базель, чтобы занять его, Якоба, место. Так оно и случилось: после смерти брата Иоганн получил его место.
Большую часть своей сознательной жизни Иоганн и Якоб не ладили. В своих математических публикациях и письмах они то и дело обменивались оскорбительными выпадами; по отзывам одного из математиков, их переписка «изобиловала такими выражениями, которыми обычно поносят конокрадов» {101} 101 E.T. Bell, Men of Mathematics (New York: Simon & Schuster, 1937), p. 134.
. Таким образом, когда возникла необходимость отредактировать рукопись Якоба посмертно, просьба эта спускалась все ниже и ниже по «цепи питания» и дошла до племянника Якоба, Николаса, сына другого брата, которого тоже звали Николасом. Николасу-младшему в то время исполнилось всего восемнадцать, однако он был одним из учеников Якоба. К сожалению, Николас не был уверен, что справится с задачей, возможно, отчасти потому, что знал о несогласии Лейбница с идеями дяди в отношении применения теории. Поэтому рукопись отлеживалась восемь лет. Наконец, в 1713 г. она была опубликована под названием «Ars conjectandi», или «Искусство предположений». Как и «Мысли» Паскаля, она до сих пор переиздается.
Читать дальше
Конец ознакомительного отрывка
Купить книгу