Всего 1 из 3? Разве истинное процентное количество сторонников мэра не должно быть наиболее вероятным исходом в случае выборочного опроса голосующих? На самом деле 1 из 3 и есть самый вероятный исход: шансы найти 0, 1, 2, 4 или 5 сторонников ниже, чем шансы найти 3. Тем не менее 3 сторонника едва ли найдутся: существует так много нерепрезентативных возможностей, что их суммированные шансы становятся в два раза больше шансов того, что ваш опрос точно отражает настроение населения. Таким образом, при опросе 5 голосующих в 2 случаях из 3 вы получите «неверное» процентное количество. В действительности, примерно в 1 случае из 10 вы обнаружите, что все голосующие, которых вы опросили, соглашаются либо с тем, что мэр им симпатичен, либо с тем, что он им не симпатичен. Так что если вы отнеслись к выборке из 5 человек серьезно, вы наверняка либо сильно переоценили, либо сильно недооценили истинную популярность мэра у населения.
Превратное представление — или ошибочное интуитивное чутье — относительно того, что небольшая выборка точно отразит неявные вероятности, настолько распространено, что Канеман и Тверский дали ему название: закон малых чисел {98} 98 Amos Tversky and Daniel Kahneman, «Belief in the Law of Small Numbers», Psychological Bulletin 76, no. 2 (1971): 105-10.
. На самом деле закон малых чисел — вовсе не закон. Это ироничное название, описывающее ошибочную попытку применить закон больших чисел в том случае, когда на самом деле числа не являются большими.
Если применить не являющийся истинным закон малых чисел только к ситуациям с сосудами, последствия будут невелики, однако, как мы уже говорили, многие события в жизни подпадают под определение процесса Бернулли, так что интуиция часто приводит нас к неправильному истолкованию того, свидетелями чему мы являемся. Вот почему, как я уже писал в главе 1, когда на глазах у людей Шерри Лансинг и Марк Кантон более или менее успешно управляют бизнесом в течение нескольких лет подряд, напрашивается вывод: предшествующий опыт этих управленцев точно предсказывает качество их работы в последующие годы.
Давайте на основе этих идей рассмотрим пример, о котором я коротко упомянул в главе 4: ситуация, в которой две компании или два сотрудника, работающие в одной фирме, соперничают между собой, при этом практически ни в чем не уступая друг другу. Вспомните о генеральных директорах 500 крупнейших мировых компаний, вошедших в рейтинг журнала «Форчун». Предположим, что каждый из генеральных директоров, имея некоторые знания и умения, обладает определенной вероятностью успеха в каждом году (как бы при этом в их компаниях этот успех ни определяли). Простоты ради предположим, что для этих генеральных директоров удачные годы случаются с такой же периодичностью, что и в примерах с белыми голышами и сторонниками мэра: 60%. (В данном случае чуть большее или чуть меньшее значение числа не оказывает влияния на основную идею.) Означает ли это, что в пределах пятилетнего периода мы можем ожидать от генерального директора успехов в управлении компанией в течение именно трех лет?
Нет. Как показал предыдущий анализ, даже если генеральные директора все поголовно будут обладать стабильным показателем успеха в 60%, шансы, что в течение заданного пятилетнего периода деятельность конкретного генерального директора отразит это, равны всего 1 к 3! В приложении к 500 компаниям это означало бы, что за последние пять лет около 333 генеральных директоров продемонстрировали уровень деятельности, не отражавший их реальные способности Более того, следует ожидать, что совершенно случайно примерно 1 из 10 генеральных директоров продемонстрирует успех или же неудачу все пять лет подряд. О чем эго говорит? Надежнее судить о людях, основываясь на анализе их способностей, нежели на цифровых показателях. Или же, как выразился Бернулли, «не стоит оценивать людские деяния исходя из результатов» {99} 99 Jakob Bernoulli, quoted in L.E. Maistrov, Probability Theory: A Historical Sketch, trans. Samuel Kotz (New York: Academic Press, 1974), p. 68.
.
Чтобы возражать против закона малых чисел, нужно обладать твердым характером. Потому как каждый может откинуться на спинку кресла и тыкать в итоговую строку отчета в качестве доказательства. Реальная же оценка знаний человека и его истинных навыков требует доверия, размышлений, верных суждений и, собственно, мужества. Сидя на собрании среди коллег, вы не можете вот так вот запросто встать и заявить: «Не увольняйте ее. Просто она оказалась не на том конце ряда Бернулли». И вряд ли вы завоюете друзей, если выскажетесь о самодовольном типе, умудрившемся продать «тойот» больше всех за всю историю существования автомобильных дилеров, в том духе, что, мол, «это все случайная флуктуация». Согласитесь, происходит такое нечасто. Успешные годы руководителей приписываются их исключительным способностям, объясняются дальновидностью. Когда же успеха не наблюдается, мы зачастую предполагаем, что неудачи точно отражают ту самую пропорцию, в которой таланты человека и его способности заполняют сосуд.
Читать дальше
Конец ознакомительного отрывка
Купить книгу