Недавно, в один из теплых весенних дней, я ввязался в подобный спор, а моим оппонентом был статистик Моше, приехавший преподавать из Еврейского университета в Иерусалиме; за обедом в столовой Калифорнийского технологического института он сел напротив меня. Отправляя в рот одну за другой ложечки обезжиренного йогурта, Моше напирал на то, что по-настоящему случайных чисел не существует. «Таких в природе нет, — сказал он. — Ну да, они составляют таблицы, пишут компьютерные программы, но на самом деле сами себя обманывают. Никому еще не удалось изобрести метод получения случайных чисел лучший, нежели броски игральных костей, который как раз и не подходит».
Моше махнул пластмассовой ложечкой в мою сторону. Тема его не на шутку взволновала. Я чувствовал, что между его отношением к понятию случайности и его религиозными убеждениями существует связь. Моше — ортодоксальный еврей, а я знаю, что многие верующие люди с трудом могут представить, будто Господь допускает существование случайности. «Предположим, ты хочешь выстроить ряд N случайных чисел между 1 и 6, — говорит Моше. — Ты бросаешь кость N раз и записываешь ряд N чисел, которые выпадают. Как по-твоему, это ряд действительно случайных чисел?»
«А вот и нет, — продолжает он, — потому что никто не может сделать кость, которая была бы идеальна. Некоторые грани всегда будут выпадать чаще, а другие — реже. Может потребоваться 1 тыс., а то и 1 млн бросков, однако рано или поздно эго непременно обнаружится. Ты увидишь, что 4 выпадают чаще, чем 6, а может, реже. Любое искусственное устройство обязательно обнаружит в себе такой вот изъян, потому что людям совершенство недоступно». А вот Природе доступно, поэтому истинно случайные события происходят на атомарном уровне. В действительности, это не что иное, как основы квантовой теории, так что остаток обеденного перерыва мы провели в рассуждениях на тему квантовой оптики.
В наше время современнейшие квантовые генераторы, подбрасывая идеальную квантовую кость Природы, выдают по-настоящему случайные числа. В прошлом совершенство, необходимое для изучения случайности, было, конечно же, целью иллюзорной. Наиболее творчески к этому вопросу подошла нью-йоркская преступная группировка, орудовавшая в 1920 г {81} 81 Tijms, Understanding Probability, p. 53.
. Каждый день им нужны были случайные пятизначные числа для незаконной лотереи, и гангстеры издевались над властями, указывая последние пять цифр бюджета Министерства финансов. (На момент написания этих строк правительство США имеет долг в 8 995 800 515 946 долларов и 50 центов или 29 679 долларов 02 цента на человека, так что современные гангстеры могли бы брать последние пять цифр из суммы долга на душу населения!) Их так называемая казначейская лотерея запуталась в сетях не только криминальных законов, но и законов научных, поскольку согласно правилу, называемому «законом Бенфорда» [11] Закон Бенфорда или закон первой цифры гласит, что в таблицах чисел, основанных на данных источников из реальной жизни, цифра 1 на первом месте встречается гораздо чаще, чем все остальные (приблизительно в 30% случаях). Более того, чем больше цифра, тем меньше вероятности, что она будет стоять в числе на первом месте.
, цифры, получаемые таким образом, являются не случайными, а скорее стремящимися к цифрам младшего разряда.
Закон Бенфорда был открыт вовсе не неким Бенфордом, а американским астрономом Шимоном Ньюкомбом. Примерно в 1881 г. Ньюкомб заметил, что страницы тетради с логарифмическими таблицами, на которых числа начинались с 1, гораздо сильнее захватаны и истрепаны, чем страницы, на которых числа начинались с 2 и так далее до 9 — те выглядели чистыми, как будто их вообще не открывали. Ньюкомб предположил: те страницы, которые больше всего истрепались, чаще всего и открывали, и на основании своих наблюдений заключил: те ученые, которые до него брали тетрадь, работали с данными, отражавшими подобное распределение цифр. Закон же был назван по фамилии Франка Бенфорда, который в 1938 г. заметил то же самое, что и Ньюкомб, когда просматривал логарифмические таблицы в научно-исследовательской лаборатории «Дженерал Электрик» в г. Скенектади, штат Нью-Йорк. Но ни Ньюкомб, ни Бенфорд не доказали справедливость закона. Это произошло только в 1995 г., и автор доказательства — Тед Хилл, математик из Технологического института Джорджии.
Согласно закону Бенфорда, все девять чисел встречаются совсем не с одинаковой частотой, число 1 встречается в качестве первой цифры в 30% случаев; число 2 — примерно в 18% и так далее, до цифры 9, которая в качестве первой встречается лишь в 5% случаев. Похожий закон, хотя и не столько четко сформулированный, применим к последующим цифрам. Закону Бенфорда подчиняются числа из многих областей, к примеру, из области финансов. В действительности, закон как нельзя лучше подходит для обработки большого массива финансовых показателей на предмет мошенничества.
Читать дальше
Конец ознакомительного отрывка
Купить книгу