Австралийские инвесторы быстро нашли 2 500 мелких инвесторов в Австралии, Новой Зеландии, Европе и США, каждый из которых согласился вложить в среднем по 3 тыс. долларов. Если все рассчитано правильно, примерный доход от этих вложений — 10 800 долларов. Однако план содержал в себе кое-какие риски. Во-первых, так как не они одни покупали билеты, существовала вероятность, что другой, и даже не один, а несколько окажутся с выигрышным билетом, то есть, выигрыш придется делить. Лотерея проводилась уже 170 раз; в 120 случаях победителя не оказывалось, в 40 случаях оказывался один победитель и лишь в 10 случаях — два. Если подобная частотность точно отражала ситуацию с шансами, тогда следовало, что в 120 случаях из 170 инвесторы получили бы весь выигрыш, в 40 случаях из 170 у них оказалась бы только половина, а в 10 случаях из 170 — лишь треть. Подсчитывая ожидаемый выигрыш с помощью принципа математического ожидания Паскаля, они пришли к следующей цифре: (120/170×27,9 млн долларов) + (40/170×13,95 млн долларов) + (10/170×6,975 млн долларов) = 23,4 млн долларов. А это 3,31 доллара за билет — неплохой доход с 1 доллара, даже после всех затрат.
Но существовала и другая опасность: кошмар службы логистики в связи с завершением выкупа всех билетов к окончанию срока розыгрыша. Могли потребоваться существенные незапланированные расходы, а значительную призовую сумму можно было так и не получить.
Члены инвестиционной группы тщательно подготовились. Они от руки, как того требуют правила, заполнили 1,4 млн билетов: каждый билет участвовал в пяти розыгрышах. В 125 торговых точках расставили выкупщиков и заручились поддержкой продуктовых магазинов, которые получали доход с каждого проданного билета. Схема была запущена за трое суток до завершения лотереи. Служащие магазинов работали посменно, чтобы успеть продать как можно больше билетов. В одном магазине за последние двое суток продали 75 тыс. билетов. Другой магазин, сетевой, принял банковских чеков на 2,4 млн билетов, распределил работу по печатанию билетов между своими торговыми точками и нанял курьеров, чтобы собрать их. И все-таки под конец группе не хватило времени: они купили всего 5 млн билетов из 7 059 052.
Прошло несколько дней с момента объявления выигрышного билета, но за выигрышем никто не явился. Выиграл консорциум инвесторов, однако им пришлось ждать в течение нескольких дней, чтобы удостовериться в этом. Затем, когда чиновникам от государственной лотереи стало известно, что выиграл консорциум, они стали уклоняться от выплаты призовых денег. Последовал целый месяц пререканий между юристами той и другой сторон, пока чиновники не признали: у них нет веских причин для отказа в выплате. В конце концов, инвесторы свой выигрыш получили.
Изучая понятие случайности, Паскаль обогатил науку своими идеями в отношении расчетов, а также понятием математического ожидания. Интересно, какие еще открытия совершил бы Паскаль, не брось он занятия математикой, не пошатнись его здоровье. Однако ничего больше не произошло. В июле 1662 г. Паскаль тяжело заболел. Врачи предписали традиционные для того времени средства: кровопускания, бесконечные очищения организма, клизмы, рвотные. На некоторое время ему стало лучше, но потом болезнь вернулась, а с ней и сильные головные боли, головокружения, судороги. Паскаль дал обет: если поправится, посвятит свою жизнь помощи бедным. Он попросил перевести его в клинику для неизлечимо больных — в случае своей скорой смерти он хотел быть среди них. Паскаль в самом деле умер — несколько дней спустя, в августе 1662 г. Ему было тридцать девять. Вскрытие показало, что причиной смерти было кровоизлияние в мозг. Кроме того, обнаружились патологические изменения в печени, желудке, кишках, чем и объяснялись болезни, терзавшие Паскаля всю жизнь.
Глава 5
ПРОТИВОСТОЯНИЕ ЗАКОНОВ БОЛЬШИХ И МАЛЫХ ЧИСЕЛ
В своих работах Кардано, Галилей и Паскаль предположили, что вероятности, соотносимые с задачами, за которые они взялись, уже известны. Например, Галилей предположил, что кость может с равным успехом упасть любой из шести сторон. Однако насколько «прочно» это знание? Возможно, кости герцога были сделаны таким образом, чтобы не отдавать предпочтение ни одной стороне, однако это не значит, что справедливость была на самом деле достигнута. Галилей мог проверить свое предположение путем наблюдений за бросками костей и последующей записи того, как часто кости падали той или иной стороной. Однако если бы он повторил эксперимент несколько раз, он, вполне возможно, обнаружил бы, что каждый раз результаты несколько разнятся, и даже небольшие отклонения могут оказаться значительными, в особенности, если иметь в виду ту крошечную разницу, которую его попросили объяснить. Чтобы ранняя работа из области теории случайности могла быть применена в реальном мире, необходимо задуматься над следующим вопросом: какова связь между неявными вероятностями и наблюдаемыми результатами? Когда мы говорим: шансы того, что кость упадет на 2, равны 1 из 6, что мы имеем в виду с практической точки зрения? Если это не значит, что при любой серии бросков кость упадет на 2 аккурат 1 раз из 6, то на чем тогда основывается наша уверенность, будто шансы бросить кость и получить 2 в самом деле равны 1 из 6? И что подразумевается, когда врач говорит: лекарство в 70% эффективно, в 1% случаев влечет за собой серьезные побочные эффекты? Или что при опросе выясняется: кандидата поддерживают 36% избирателей? Это непростые вопросы, они имеют отношение к самой сути понятия случайности, понятия, о котором математики до сих пор спорят.
Читать дальше
Конец ознакомительного отрывка
Купить книгу