«Зелиг» — кинофильм режиссера Вуди Аллена (1983), действие которого происходит в Америке 1920–1930-х годов. В фильме рассказывается о необычном еврее по фамилии Зелиг, умеющем перевоплощаться в людей, с которыми он общается. Прим. перев.
Все ипостаси числа e и экспоненциальной функции представлены в книге E. Maor, e: The Story of a Number (Princeton University Press, 1994). Читатели, которые знакомы с интегральным исчислением, насладятся статьей B. J. McCartin, e: The master of all, Mathematical Intelligencer, Vol. 28, № 2 (2006), pp. 10–21. PDF-версия доступна по адресу http://mathdl.maa.org/images/upload_library/22/Chauvenet/mccartin.pdf.
«Упаковочный» коэффициент для пар, случайно рассаживающихся в кинотеатре, в научной литературе был изучен на других примерах. Он впервые возник в органической химии, см. P. J. Flory, Intramolecular reaction between neighboring substituents of vinyl polymers, Journal of the American Chemical Society, Vol. 61 (1939), pp. 1518–1521. Более современное изучение этого вопроса относится к проблеме случайной парковки, классическим головоломкам в теории вероятностей и статистической физике, см. W. H. Olson, A Markov chain model for the kinetics of reactant isolation, Journal of Applied Probability, Vol. 15, № 4 (1978), pp. 835–841.
Вопрос о том, когда прекращать перебирать партнеров и останавливать выбор на будущем супруге, изучался в различных формах и имеет различные названия: задача о невесте, задача о вступлении в брак, задача о капризном поклоннике, задача о выкупе султана за невесту. Но наиболее распространенное в настоящее время название — это задача секретаря. (Воображаемый сценарий найма лучшего секретаря из данного списка кандидатов. Вы беседуете с каждым претендентом по отдельности и должны решить, берете ли вы его на работу или прощаетесь навсегда). Для ознакомления с этой замечательной математической головоломкой и ее историей см. http://mathworld.wolfram.com/SultansDowryProblem.html и http://en.wikipedia.org/wiki/Secretary_problem. Для дополнительных сведений обратитесь к статье T. S. Ferguson, Who solved the secretary problem? Statistical Science, Vol. 4, № 3 (1989), pp. 282–289. Понятное изложение решения этой задачи можно найти по адресу http://www.math.uah.edu/stat/urn/Secretary.html. Для лучшего ознакомления с теорией оптимальных правил остановки см. T. P. Hill, Knowing when to stop: How to gamble if you must — the mathematics of optimal stopping, American Scientist, Vol. 97 (2009), pp. 126–133.
«Мужчина нарасхват» — кинофильм режиссера Габриэле Муччино (2012). Звезда футбола и просто шикарный мужчина (Джерард Батлер) по воле случая становится тренером детской футбольной команды. С этого момента для своих подопечных и их обольстительных мамочек он мужчина нарасхват. Прим. перев.
Модели любовных отношений, основанные на дифференциальных уравнениях, см. S. H. Strogatz, Nonlinear Dynamics and Chaos (Perseus, 1994).
Анаграмму Ньютона см. V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations (Springer, 1994).
Хаос в задаче о трех телах обсуждается в I. Peterson, Newton’s Clock (W.H. Freeman, 1993).
Эдмунд Галлей (1656–1742) — английский астроном и геофизик. Главные достижения — создание метода расчета кометных орбит и открытие периодичности некоторых комет. Знаменитая комета Галлея названа в его честь. Прим. перев.
Цитату о том, как задача о трех телах вызывала головную боль у Ньютона, см. D. Brewster, Memoirs of the Life, Writings, and Discoveries of Sir Isaac Newton (Thomas Constable and Company, 1855), Vol. 2, p. 158.
«Выйди на свет» (Step into the Light) — название популярной песни австралийского певца Даррена Хейса. Прим. перев.
Прекрасная возможность познакомиться с векторным исчислением и уравнениями Максвелла и, вероятно, самый лучший учебник, который я когда-либо изучал: E. M. Purcell, Electricity and Magnetism, 2 ndedition (Cambridge University Press, 2011). Еще классика: H. M. Schey, Div, Grad, Curl, and All That, 4 thedition (W. W. Norton and Company, 2005).
Эти слова были написаны во время празднования 150-летней годовщины книги Максвелла «О физических силовых линиях», увидевшей свет в 1861 году, см. Part III. The theory of molecular vortices applied to statical electricity, Philosophical Magazine (April and May, 1861), pp. 12–24, доступно по адресу http://en.wikisource.org/wiki/On_Physical_Lines_of_Force. Отсканированная копия оригинала представлена на http://www.vacuum-physics.com/Maxwell/maxwell_oplf.pdf.
На оригинал стоит взглянуть. Кульминационная точка находится чуть ниже уравнения 137, где Максвелл, трезвый человек, не склонный к театральности, не удержался и выделил курсивом самый революционный вывод в своей работе: «Скорость поперечного волнового движения нашей гипотетической среды, вычисленная на основании электромагнитных экспериментов М. Кольрауша и Вебера, согласуется с такой точностью со скоростью света, вычисленной на основании оптических экспериментов М. Физо, что мы едва ли можем избежать вывода, что свет состоит из поперечного волнового движения той же среды, которая является причиной электрических и магнитных явлений».
Читать дальше