Евклид [62] Все 13 книг Elements в одном удобном томе с большим количеством иллюстраций: Euclid’s Elements, edited by D. Densmore, (Green Lion Press, 2002). Еще один отличный перевод в формате PDF: http://farside.ph.utexas.edu/euclid.html. Прим. ред.: В английской традиции книги Евклида называются Elements («Элементы»), в отличие от русской традиции, где книги Евклида имеют название «Начала». Русское полное издание «Начал» Евклида: Начала Евклида. Пер. и комм. Д. Д. Мордухай-Болтовского при ред. участии И. Н. Веселовского и М. Я. Выгодского. В 3 т. (Серия «Классики естествознания»). М.: ГТТИ, 1948–50.
установил этот дедуктивный подход в своих «Началах» (в настоящее время наиболее часто перепечатываемый учебник всех времен) около 2300 лет назад. С тех пор евклидова геометрия стала моделью логического мышления во всех сферах жизни — от науки и философии до права и политики. Например, Исаак Ньютон применил метод Евклида в структуре своего шедевра «Математические начала натуральной философии». Используя геометрические доказательства, он вывел законы Галилея и Кеплера о движении летящих предметов и планет на основе их собственных глубинных законов движения и гравитации. «Этика» Спинозы [63] Бенедикт Спиноза (1632–1677) — нидерландский философ-материалист, натуралист, один из главных представителей философии Нового времени. Считал, что мир — закономерная система, которая до конца может быть познана геометрическим методом. Прим. перев.
следует той же схеме. Полное название книги «Этика, доказанная в геометрическом порядке» (Ethica Ordine Geometrico Demonstrata). Вы можете услышать отголоски Евклида даже в Декларации независимости. Когда Томас Джефферсон [64] Дополнительные сведения о Томасе Джефферсоне, о его преклонении перед Евклидом и Ньютоном и использовании им аксиоматического подхода при написании Декларации независимости, можно найти в книге I. B. Cohen, Science and the Founding Fathers, (W. W. Norton and Company), 1995 и J. Fauvel, Jefferson and mathematics на http://www.math.virginia.edu/Jefferson/jefferson.htm.
писал: «Мы считаем эти истины самоочевидными», он имитировал стиль «Начал» Евклида. Древнегреческий математик начал с определений, постулатов и самоочевидных истин геометрии, аксиом, и из них воздвиг здание утверждений и доказательств, где истины связаны между собой посредством неопровержимой логики. Джефферсон построил Декларацию аналогичным образом: его радикальные выводы о том, что колонии имеют право на самоуправление, казались неотвратимыми, как факт геометрии.
Даже если этот документ с некоторой натяжкой можно воспринимать как часть интеллектуального наследия, имейте все же в виду, что Джефферсон читал Евклида. Через несколько лет после окончания второго президентского срока он отошел от общественной жизни и писал об этом своему старому другу Джону Адамсу 12 января 1812 года: «Я отказался от газет в обмен на Тацита и Фукидида, Ньютона и Евклида, и считаю себя гораздо счастливее».
Однако всем поклонникам рациональности Евклида не хватает понимания интуитивных аспектов геометрии. Без вдохновения не было бы никаких доказательств или теорем, которые следует доказать в первую очередь. Как и при сочинении музыки или стихов, в геометрии требуется получить что-то из ничего. Как поэту найти нужные слова или композитору — западающую в память мелодию? Это тайна музыки; своя тайна присуща и математике.
В качестве иллюстрации рассмотрим задачу построения равностороннего треугольника. Правила игры заключаются в том, что вам дают одну сторону треугольника (отрезок), как показано на рисунке:

Ваша задача — найти способ использовать этот отрезок для построения двух других сторон и доказать, что у них такая же длина, как и у первой. Причем в вашем распоряжении только поверочная линейка и циркуль. Линейка позволяет начертить прямую линию любой длины или соединить прямой линией две любые точки. Циркуль помогает нарисовать окружность любого радиуса с центром в любой точке.
Однако имейте в виду, что это не обычная линейка: на ней нет делений и ее нельзя использовать для измерения длины. (Другими словами, она не подходит для копирования или измерения исходного отрезка.) Циркулем нельзя измерять углы, а можно только строить окружности.
Готовы? Поехали!
Вы в ступоре. С чего начать?
Логика здесь не поможет. Те, кому приходится часто принимать решения, знают, что в такой ситуации лучше всего расслабиться и попробовать разгадать головоломку в надежде, что что-нибудь придет в голову. Например, с помощью поверочной линейки попробовать через концы отрезка провести наклонные линии.
Читать дальше