Леонард Млодинов - Евклидово окно. История геометрии от параллельных прямых до гиперпространства

Здесь есть возможность читать онлайн «Леонард Млодинов - Евклидово окно. История геометрии от параллельных прямых до гиперпространства» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: Livebook, Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Евклидово окно. История геометрии от параллельных прямых до гиперпространства: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Евклидово окно. История геометрии от параллельных прямых до гиперпространства»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Мы привыкли воспринимать как должное два важнейших природных умений человека — воображение и абстрактное мышление, а зря: «Евклидово окно» рассказывает нам, как происходила эволюция нашей способности представлять то, чего мы не видим воочию.
Эта книга — восхитительная смесь научного авторитетного труда и веселого балагурства, она превращает классические теории и понятия геометрии в доступные, поражающие воображение истории.
Спасибо Млодинову: не нужно быть математиком или физиком, чтобы постичь загадки пространства и поразиться великолепию мироустройства.
Перевод: Шаши Мартынова

Евклидово окно. История геометрии от параллельных прямых до гиперпространства — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Евклидово окно. История геометрии от параллельных прямых до гиперпространства», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Если дернуть струну, возникнут колебания в форме трех полных волн, четырех и т. д. (но никогда не дробное число, иначе нарушится условие, что концы струны зафиксированы). Это высшие гармоники. Ноте, взятой на скрипке или пианино, к примеру, обычно сопутствует более сильная относительная амплитуда первых шести гармоник, нежели те, что дают другие инструменты. Звук трубы органа, с другой стороны, относительно обделен более высокими гармониками. Благодаря высшим гармоникам музыкальные инструменты — и семейства элементарных частиц — столь разнообразны.

Струны из струнной теории не привязаны за концы, как гитарные. Они бывают открытые и замкнутые. Они могут щепиться и соединяться или сливаться концами и образовывать две петли. Струна щепится или слипается — свойства ее меняются: издалека похоже, будто возник новый вид частиц. Обмен калибровочными частицами на самом деле есть расщепление и соединение струн, плавающих в пространстве-времени.

Из всего этого получается, что частицы, которые мы наблюдаем, — музыкальные шкатулки, а их свойства — слышимая нами музыка, которую они играют. В зависимости от сорта исполняемой музыки эти шкатулки, похоже, бывают многих разновидностей. Согласно теории струн, все музыкальные шкатулки идентичны и отличаются не внешним видом, а тем, как именно в них колеблется струна.

К примеру, энергия колебания зависит от длины волны и амплитуды. Чем больше пиков и провалов вдоль ее длины и чем сами они больше, тем энергичнее колебание. Поскольку из теории относительности нам известно, что масса и энергия эквивалентны друг другу, нас, вероятно, не удивит, что за пределами черного ящика струны, колеблющиеся энергичнее, воспринимаются нами как более массивные.

Это верно и для других свойств, не только для массы, — например, для разных видов заряда. Почему бы и нет? В смысле теории поля масса частицы есть разновидность заряда — по отношению к гравитационному полю. Согласно струнной теории все частицы в природе, включая и калибровочные, при всем разнообразии всевозможных свойств, суть разные формы колебаний струны.

Во Вселенной великое множество и разнообразие частиц. Достанет ли колеблющейся струне богатства и насыщенности, чтобы охватить всю эту великую непохожесть? Не в евклидовом мире.

Но моды колебаний струны, а значит, и предсказание существования частиц и их свойств сильно зависят от числа измерений, в которых струна колеблется, и от топологии этих измерений. Вот он, источник глубинной связи между свойствами пространства и свойствами самой материи: согласно теории струн, структура пространства определяет физические свойства элементарных частиц и сил природы. В струнной теории всего трех пространственных измерений недостаточно. Именно точная геометрия и топология дополнительных измерений определяют теорию элементарных частиц и сил, которые предсказывает теория струн.

Струна в одномерном пространстве может колебаться лишь одним способом: растягиваться и сокращаться. Такие колебания называется продольными. В двух измерениях струна может колебаться и таким способом, однако теперь ей доступен еще один, новый вид колебаний: поперечный, — он происходит перпендикулярно длине струны. Их мы, по сути, и обсуждали. В трех измерениях направление поперечных колебаний может вращаться по спирали — вспомните пружину Слинки. В высших измерениях все лишь усложняется.

Топология тоже влияет на колебания. Топологию так запросто не определишь, но, грубо говоря, она имеет отношение к свойствам поверхностей и пространств, которые связаны с их свойствами, но не с их метрикой (отношениями расстояний) или кривизной. Отрезок прямой топологически отличается от круга, потому что у него есть два конца, а у круга — ни одного. А вот разница между кругом и эллипсом тополога не интересует — это всего лишь вопрос кривизны. Можно еще вот так представлять себе эту разницу: любые две фигуры, которые можно трансформировать друг в друга растяжением без разрывов, имеют с точки зрения тополога одинаковые свойства.

Как топология пространства влияет на струну? Предположим, струнной теории нужны лишь два дополнительных измерения. Поскольку эти дополнительные измерения в струнной теории предположительно малы, представим «маленькое» двухмерное пространство — квадрат или прямоугольник — вроде плоскости, только конечной. Это пространство имеет один топологический тип. Теперь свернем из него цилиндр. Говоря геометрически, кажется, что он искривлен, однако считается плоским, как планарное пространство. Это означает, что у него нулевая кривизна: любая фигура, нарисованная на плоскости, может быть свернута в цилиндр без искажения расстояний между любыми двумя точками. Но цилиндр отличается от плоскости соединенностью — топологически. Например, на плоскости любой круг или другая простая замкнутая кривая могут быть сжаты до точки в пределах того же пространства. На поверхности цилиндра существуют кривые, с которыми так поступить нельзя, — например, любая кривая, располагающаяся вокруг оси цилиндра. Колебательное движение этого вида у струны в цилиндрическом пространстве ограничено и отличается от колебаний на плоскости, поэтому струнная теория предписывает Вселенной, имеющей такую форму, иные виды частиц и их взаимодействий. Цилиндр близко связан с другой фигурой — тором, он же пончик. Чтобы получить тор из цилиндра, достаточно соединить его края. Но возможны и гораздо более сложные топологии — например, вместо пончика с одной дыркой можно взять пончик со множеством дырок. Каждый имеет разные колебательные спектры. Чем больше измерений добавляем, тем сложнее возможные пространства, особенно если допустить неплоскость этих пространств. И во всех этих разнообразных пространствах возможные моды колебаний разнятся. Такое богатство видов колебаний и позволяет теории струн объяснять разнообразие элементарных частиц и их взаимодействий — во всяком случае, в теории.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Евклидово окно. История геометрии от параллельных прямых до гиперпространства»

Представляем Вашему вниманию похожие книги на «Евклидово окно. История геометрии от параллельных прямых до гиперпространства» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Евклидово окно. История геометрии от параллельных прямых до гиперпространства»

Обсуждение, отзывы о книге «Евклидово окно. История геометрии от параллельных прямых до гиперпространства» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x