Тут было бы так мило заявить, что из-за всяких логических требований к дополнительным измерениям струнной теории возможен лишь один вид пространства и что свойства элементарных частиц, соответствующие колебаниям струн в таком пространстве, — аккурат те, что мы наблюдаем в природе. Ага, размечтались. Но есть и хорошие новости. По крайней мере сгодятся не любые дополнительные измерения. Похоже, их должно быть шесть (к этому мы еще вернемся), и у них обязаны присутствовать особые свойства — они, к примеру, должны быть свернуты, как те, что в теории Калуцы. В 1985 году физики открыли класс пространств с самыми подходящими особенностями. Они называются пространствами Калаби-Яу [299](или формами Калаби-Яу — они, вообще говоря, конечны). Как можно догадаться, шестимерные пространства Калаби-Яу несколько сложнее, чем, скажем, пончик с шоколадной глазурью. Но общее с пончиком у них есть — дырка. На самом деле число этих дырок может быть разным, и сами они тоже непростые, многомерные объекты, но это всё детали [300]. Суть в следующем: существует семейство струнных колебаний, связанных с каждой дыркой. Таким образом, струнная теория предсказывает наличие семейств у элементарных частиц. Это пример одной из замечательных «производных» от экспериментально наблюдаемых фактов, которые Стандартная модель вынуждена была включать «вручную», без теоретического объяснения. Это были хорошие новости.
А плохо вот что: существуют десятки тысяч известных видов пространств Калаби-Яу. Большинство содержит в себе более трех дырок, хотя элементарных частиц есть всего три семейства. А для расчетов, необходимых для вывода свойств частиц, которые лишь заявлены Стандартной моделью, т. е., допустим, массу и заряд частицы, физикам необходимо знать, какое из великого множества пространств выбрать. Пока никому не удалось найти такое пространство Калаби-Яу, которое давало бы физическому миру, каким мы его знаем, точное описание, т. е. Стандартную модель или фундаментальный физический принцип, который оправдал бы выбор именно этого пространства. Некоторые скептики считают, что такой подход никогда не принесет плодов. Но подобных критиков гораздо меньше, чем было поначалу, когда работа над теорией струн равнялась поцелую профессиональной смерти.
Глава 36. Струнные неприятности
Когда Намбу с коллегами предложили струнную теорию, у нее были некоторые особенности. Например, их теория не согласовывалась с теорией относительности, если не заставить некий неприятный фактор равняться нулю: (1 — ( D — 2)/24). Любой старший школьник скажет, что у этого уравнения одно решение: D = 26. Но с этого все только начинается: D в этом уравнении есть число измерений пространства. Вскоре все заинтересуются работами Калуцы, вот только его пять измерений не покажутся ни избыточными, ни диковинными, а недостаточно диковинными.
У теории были и другие проблемы. Как говорилось ранее, когда вероятности некоторых процессов рассчитывали согласно правилам квантовой механики, математика выдавала отрицательные ответы. Теория также предсказывала существование неких частиц, называемых тахионами, чья масса не являлась действительным числом, а двигались они быстрее света. (Теория Эйнштейна, строго говоря, не запрещает такого; она лишь не позволяет частицам двигаться в точности со скоростью света.) А еще она предсказывала существование кое-каких дополнительных частиц, которых никто никогда не наблюдал.
Если местный прогноз погоды предсказывает отрицательные 50 % вероятности шторма, выпадение осадков вверх и осыпь жаб с небес, компьютерная модель метеорологов, скорее всего, не вызовет у вас доверия. Физики тоже настроились скептически. Но предположите, что прогноз при этом предсказал температуру воздуха — и угадал. Связь между бозонными струнами и поведением адронов оказалась слишком интригующей — рука не поднималась ее отмести.
Много чего в теории уже выглядело довольно неуклюжим, но вскоре физики поняли, что есть и еще одно узкое место, совсем уж затруднительное. В квантовой механике все частицы могут принадлежать к одному из двух типов: бозоны и фермионы. Технически говоря, разница между бозонами и фермионами — в типе внутренней симметрии, известной как «спин». Но на практическом уровне эта разница выражается в том, что никакие два фермиона не могут иметь одно и то же квантовое состояние. Это вполне хорошее свойство, если городить, скажем, атомы, из которых сделана материя. Это означает, что электроны в атоме не будут толпиться все разом на самом нижнем энергетическом уровне. Если б толпились, они у всех химических элементов там преимущественно и оставались бы. А на самом деле атомы элементов периодической системы получаются путем заполнения электронами энергетических уровней, одного за другим, вплоть до внешних; благодаря этому атомы разных элементов имеют разные физические и химические особенности. У бозонов такого ограничения нет. Поэтому материя сделана из фермионов. Калибровочные частицы, обеспечивающие взаимодействия между фермионами, — бозоны. Однако в бозонной теории струн все частицы… что? Именно — бозоны.
Читать дальше
Конец ознакомительного отрывка
Купить книгу