S-матрицу придумал Гейзенберг, впервые в 1937 году применил Джон Уилер, а расцвет ее пришелся на 1960-е, и обеспечил его физик из Беркли Джеффри Чу. Буквой S обозначается «scattering» ( рассеяние), поскольку главный способ изучения элементарных частиц физиками таков: физики разгоняют частицы до бешеных скоростей и энергий, после чего вляпывают их друг в дружку и смотрят, какие именно дребезги полетят во все стороны. Примерно как изучать устройство автомобиля путем организации автокатастроф.
В мелких авариях удается оторвать что-нибудь скучное, вроде бампера, а вот на гоночной скорости глазам пристального наблюдателя представится полет даже самых крепко ввинченных в пассажирское сиденье болтов и гаек. Но есть одна большая разница. В экспериментальной физике, влепив с размаху «шеви» в «форд», можно получить на выходе комплектующие от «ягуара». В отличие от автомобилей, элементарные частицы могут превращаться друг в друга.
Когда Уилер разработал матрицу рассеяния, уже собрался — и продолжал накапливаться — немалый корпус экспериментальных данных, однако успешной квантовой теории создания и исчезновения элементарных частиц не существовало даже в части электродинамики. S-матрица являла собой черный ящик, в который можно было что-нибудь засунуть — определения сталкивающихся частиц, их импульсов и т. д. — и получить на выходе аналогичные данные, но для вновь возникших частиц.
Для построения матрицы рассеяния, т. е. внутренностей черного ящика, вообще говоря, требовалась теория взаимодействия частиц. Но даже и без теории кое-что об S-матрице сказать можно — основываясь лишь на природных симметриях и общих принципах вроде согласованности с теорией относительности. Соль S-матричного подхода заключалась в выяснении, насколько далеко можно уехать на одних этих принципах.
В 50-х и 60-х годах прошлого века такой подход был практически повальным увлечением. В своей лекции в Эриче Гелл-Манн рассказал о некоторых поразительных закономерностях, называемых дуальностями, которые можно наблюдать при столкновении адронов. Венециано задумался, возникнут ли такие закономерности в более общем случае. Через полтора года он понял: все математические свойства матрицы рассеяния, которые он рассматривал, присущи одной простой математической функции — эйлеровой бета-функции.
Теория Венециано (дуальная модель Венециано) оказалась поразительным открытием. С чего бы потенциально сложной матрице рассеяния принимать столь простую изящную форму? Но таково оказалось первое математическое чудо в ряду многих, какие потом будут регулярно проявляться в струнной теории — как раз такие красивые результаты убедили Шварца, что он не впустую тратит жизнь на теорию струн.
Результат, полученный Венециано, показался физикам настолько элегантным, что вдохновил их на совершенно не S-матричный вопрос: как же устроены процессы столкновения частиц, из-за которых получается матрица рассеяния? Что же у черного ящика внутри? Если бы удалось с этим разобраться, прояснилась бы внутренняя структура сталкивающихся адронов, а также взаимодействие, именуемое сильным, которое ими управляет.
В 1970 году Ёитиро Намбу из Университета Чикаго, Хольгер Нильсен из Института Нильса Бора и Леонард Сасскинд из Университета Иешивы, ответили на вопрос: нужно моделировать элементарные частицы не как точки, а как малюсенькие колеблющиеся струны.
Мы теорию открываем или изобретаем ? Физики — дети, блуждающие в сумерках по парку с фонариками в поисках истины, или же дети с кубиками, возводящие башни, пока они не осыплются? Или, на самом деле, — и то, и другое? Тогда какого рода эта дуальность — как та, о которой говорил Гелл-Манн, или как та, что есть у волны и частицы?
Есть и менее приятные синонимы к глаголам «изобретать» и «открывать». Например, «стряпать» или «натыкаться на». Исходная струнная теория — под названием бозонной теории струн — однозначно была «стряпней». Ей не доставало естественности, она полнилась невероятными свойствами, и ее явно собрали в кучу, лишь бы воспроизвести озарение, посетившее Венециано. Но Намбу с коллегами кое на что и наткнулись . Они открыли струнную теорию практически в том же смысле, что Планк когда-то — квантовую. Оба набрели на идею: энергетические уровни можно представить количественно, а частицы можно представить как струны; в обоих случаях ни подлинное значение, ни широта охвата этих идей не были поняты, а на формирование осмысленной теории потребовались годы. Оба набрели на то, что могло быть новым законом природы — или просто математической ужимкой. И лишь годы усилий могли определить, что есть что. В случае с квантовой теорией потребовалось 25 лет — от Планка до Гейзенберга и Шрёдингера. Струнная теория уже проскочила этот рубеж.
Читать дальше
Конец ознакомительного отрывка
Купить книгу