Если, как и в случае с шариком для пинг-понга, мы определяем скорость электрона с точностью до ± 1 см/сек, местоположение электрона не удастся определить точнее, чем ± 1 см. Такое ограничение точности — совсем не малюсенькое. Напротив, оно довольно заметно. Паршивая выйдет игра в пинг-понг при такой точности определения местоположения шарика, но на атомном уровне ситуация именно такова. Для электронов в атоме определять их местоположение как «ну где-то в радиусе 10–8 см», что и есть примерные размеры атома, означает вынужденную неопределенность в части скорости электронов до 10+8 см/сек, а эта неопределенность практически равна самой скорости электрона.
Квантовой механике в формулировке Гейзенберга и Шрёдингера удалось весьма успешно описать явления и атомной, и даже ядерной физики своего времени. Но применение принципа неопределенности к гравитации в описании теории Эйнштейна приводит нас к довольно диковинным выводам о геометрии пространства.
Эйнштейнов поиск объединенной теории поля получил не слишком активную поддержку в том числе и потому, что конфликт между общей теорией относительности и квантовой механикой становится очевиден лишь в областях настолько малых, что даже в наши дни нет никакой надежды наблюдать их впрямую. Но Евклид говорил, что пространство состоит из точек, и геометрия должна быть применима к любой сколь угодно малой области, какую только можно вообразить. Если же теории конфликтуют, значит, что-то не так с одной теорией или с обеими — ну или с Евклидом.
Область, в которой возникает этот самый конфликт, часто описывают как ультрамикроскопическую. Для приверженцев строгих цифр: это расстояние порядка 10–33 сантиметра, и называется оно планковской длиной. Для любителей зрительных образов: если увеличить планковскую длину до диаметра яйцеклетки человека, обычный детский игральный шарик раздуется до размеров наблюдаемой Вселенной. Планковская длина — о-очень маленькая. И все же по сравнению с точкой ее размер громаден сверх всякой меры.
Как-то ночью, после работы над этой главой, битва между Эйнштейном и Гейзенбергом явила себя во сне. Сон начался с того, что пришел Николай в образе Эйнштейна и показал мне кое-какие теоретические выкладки, которые он накропал цветным карандашиком в своем школьном альбоме по рисованию:
…
Николай в роли Эйнштейна: Пап, я открыл общую теорию относительности! Когда вокруг есть материя, пространство искривляется, а в пустом пространстве гравитационное поле равно нулю и пространство плоское. На самом деле, если взять достаточно малую область, пространство приблизительно плоское.
(Тут я уже собираюсь сказать: «Какая замечательная теория! Можно я ее на стенку повешу?» — как входит Алексей.)
Алексей в роли Гейзенберга: Пррошу пррощения. Гравитационное поле, как и любое другое, подчиняется принципу неопределенности.
Николай в роли Эйнштейна: И что?
Алексей в роли Гейзенберга: А то, что в пустом пространстве поле в среднем, может, и ноль, но на самом деле оно флуктуирует в пространстве и времени. И в прям очень маленьких областях эти флуктуации — мегаздоровенные.
Николай в роли Эйнштейна (ноет): Но если гравитационное поле флуктуирует, то флуктуирует и кривизна пространства, потому что мои уравнения показывают, что кривизна пространства связана со значением силы поля…
Алексей в роли Гейзенберга (насмехается): Ха-ха! Это означает, что пространство крошечных областей нельзя считать плоским… На самом деле, если приглядеться поближе — в масштабах планковской длины — возникают крошечные черные дырочки… Некрасиво…
Николай в роли Эйнштейна: Я сказал, хочу, чтобы крошечные области пространства были плоскими!
Алексей в роли Гейзенберга: А вот и нет!
Николай в роли Эйнштейна: А вот и да!
Алексей в роли Гейзенберга: Нет.
Николай в роли Эйнштейна: Да.
…Диалог продолжался в том же духе, покуда я не проснулся весь дрожа. (Это знак! Не следовало ложиться спать, не дописав главу.)
Одновременное применение принципа неопределенности и общей теории относительности к малым областям пространства приводит к фундаментальному противоречию с теорией относительности вообще. Кто прав — Гейзенберг или Эйнштейн? Если прав Эйнштейн, квантовая теория неверна. Но история с квантами не похожа на ошибочную: эксперимент и теория сходятся с точностью выше миллионной доли. Корнеллский физик Тоитиро Киносита, один из ведущих в квантовой электродинамике ученых, называет это «самой достоверной теорией на Земле, а может, и во всей Вселенной — в зависимости от того, сколько в ней инопланетян» [284].
Читать дальше
Конец ознакомительного отрывка
Купить книгу