Язык математики ценен для науки не потому, что он изобретен искусственно, а потому, что он не обладает теми свойствами обычного языка, которые делают его мало приспособленным для научного использования, и обладает такими свойствами, которые очень ценны для развития науки. Естественный язык, сложившийся в историческом процессе как коммуникативное и информативное средство, сугубо модален и эмоционален. Он великолепно приспособлен для передачи внутреннего состояния человека, для воздействия на других людей путем возбуждения в них соответствующих чувств, но мало пригоден для точного, бесстрастного научного анализа, поскольку его элементы не обладают однозначностью смысла, имеют массу трудноуловимых оттенков, поскольку в нем имеются омонимичные выражения, а его слова меняют свое значение со временем, иногда приобретая прямо противоположный смысл. Короче, естественный язык не подходит для точных и аналитических наук как средство исследования из-за его слабой формализованности.
Так что же оставалось делать Платону или элеатам? Использовать тот примитивный математический язык, который существовал в их время? Он был слишком маломощен для тех серьезных целей, которые ставили перед собой эти философы: они ведь стремились исследовать основные проблемы бытия и духа. И они нашли выход: в обычном человеческом мышлении и его выражении — естественном языке (в целом неподходящем для их серьезных задач) они отыскали такую часть, бесстрастную и однозначно действующую, которая нужна для их целей, логику. Эта часть мышления и языка, хотя она и не была формализован а, то есть представлена с помощью какой-либо символики, тем не менее была достаточно надежна, поскольку состояла из правил — схем, форм рассуждений, фактически всегда присутствующих в мышлении и языке (отсюда прилагательное «формальная» в термине «формальная логика»). Учитывая это, можно сказать, что работы Платона (и других эллинских мыслителей того же ранга) удовлетворяют «критерию научности» Канта в том смысле, что проведены они с помощью схематизма (формализма) логики, употребляемого как инструмент научного исследования. Для строгого согласия с Кантом, правда, нужно признать этот формализм принадлежащим математике. Допущение, что в логических (то есть мыслительных, относящихся к рассуждениям) формах обычного языка с древнейших времен был заложен математический аппарат, ещё недавно показалось бы странным. Однако сейчас, в эпоху великого соединения математики и логики, это уже не удивляет.
Здесь мы должны, наконец, сказать об Аристотеле. В чем состоял его вклад, если логические схемы — правила рассуждений (во многом, во всяком случае) — были выделены до него? Прежде всего в том, что он их систематически описал в серии трудов, составляющих знаменитый «Органон» [9] 12 9. В переводе с греческого «органон» означает орудие (метод) исследования; под этим названием комментаторы Аристотеля объединили пять его сочинений по логике и методам научного познания: «Категории» (русск. перев. 1939 г.) «Об истолковании» (русск. дерев. 1891 г.), «Аналитики первая и вторая» (русск. перев. 1952 г.), «Топика» и «Опровержение софистических аргументов».
. В важнейшем из этих трудов — «Первой аналитике» — была изложена силлогистика (система силлогистических умозаключений, или силлогизмов) — главное достижение Аристотеля в логике, от которого идет теория логики, то есть логика как наука.
Приведем один из аристотелевских силлогизмов: «если А приписывается всем Б, а Б — всем В, то А необходимо приписывается всем В», например, если свойство быть живым существом (А) приписывается всем двуногим существам (Б), а свойство двуногости (Б) приписывается всем людям (В), то свойство быть живым существом (А) необходимо приписывается всем людям (В) [10] 13 10. Аристотель. Аналитики первая и вторая. [М.], 1952, с. 14—15 (см. также примечения к русскому переводу с. 293).
. Это силлогистическое умозаключение — самая знаменитая форма (модус) силлогизмов: Barbara (латинские названия модусов были придуманы в средние века). Следует обратить внимание на то, что Аристотель выделяет именно форму: силлогизм Barbara — то, что нами выделено разрядкой, это схема умозаключения (дедуктивного вывода, дедукции), а рассуждение, приведенное вслед за этой схемой, есть только примерее применения.
Здесь мы ясно видим тот гигантский шаг вперед, который делает Аристотель по сравнению с Платоном: у Платона логические правила функционируют только в конкретных рассуждениях, Аристотель же отделяет их от содержания и делает предметом специального исследования. Именно, Аристотель, используя специальную терминологию, создает систему силлогизмов, охватывающую все правильные силлогистические умозаключения, то есть правила силлогистического вывода, позволяющие получать из верных посылок с необходимостью из них вытекающие верные заключения.
Читать дальше