Борис Бирюков - Жар холодных числ и пафос бесстрастной логики

Здесь есть возможность читать онлайн «Борис Бирюков - Жар холодных числ и пафос бесстрастной логики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1977, Издательство: Издательство Знание, Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Жар холодных числ и пафос бесстрастной логики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Жар холодных числ и пафос бесстрастной логики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.

Жар холодных числ и пафос бесстрастной логики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Жар холодных числ и пафос бесстрастной логики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

«10. Задача о разрешимости диофантова уравнения.

Пусть задано диофантово уравнение [14]с произвольными неизвестными и целыми рациональными числовыми коэффициентами. Указать способ, при помощи которого возможно после конечного числа операций установить, разрешимо ли это уравнение в целых рациональных числах» [15].

Как мы видим из этого текста, эта проблема была поставлена Гильбертом на интуитивно-содержательном уровне, поэтому для ее решения нужно было проделать огромный путь, развить целые теории, разработать новые математические понятия. Ф. П. Варпаховский и А. Н. Колмогоров, говоря о теории алгоритмов, замечают:

«Оглядываясь на пройденный путь, математики должны быть благодарны десятой проблеме Гильберта уже за то, что она послужила одним из стимулов для создания этой теории» [16]. Решение этой проблемы — решение отрицательное, доказывающее невозможность соответствующего алгоритма, было получено постепенно, усилиями ряда математиков; завершающий результат принадлежит представителю «четвертого поколения» марковской школы Ю. В. Матиясевичу, добившемуся успеха через 70 лет после постановки проблемы Гильбертом [17].

«Ясное и однозначно понимаемое предписание о действиях» может быть дано самыми разными путями: сформулировано на естественном языке (с выбором таких слов и выражений, которые не допускают разночтений), указано математическим соотношением, определено чертежом, номограммой, таблицей, графиком; иногда достаточно просто привести пример осуществления «способа», как его сущность становится ясной. Как же построить уточнение понятия о такого рода способах?

В начале 50-х годов в работах А. А. Маркова (первые публикации которого по теории алгоритмов относятся ко второй половине 40-х годов) получила развитие та идея, что все математические алгоритмы можно свести к повторению одной элементарной операции, выполняемой в строгом соответствии с начертанным на бумаге предписанием, которое после очень простого объяснения на естественном языке или даже демонстрации нескольких примеров становится ясным каждому человеку и всеми людьми понимается одинаково. В 1951 году в «Трудах Математического института АН СССР» (т. XXXVIII) была помещена статья А. А. Маркова «Теория алгорифмов», излагающая новую концепцию, а в 1954 году вышла его большая монография [18]. Ныне она, как и работы Чёрча и Тьюринга, является классической.

Марковские алгоритмы, которым их автор дал название «нормальных алгорифмов», работают над словами в каких-либо алфавитах, перерабатывая их в (другие) слова. Алгорифм состоит из вертикального списка команд (их называют формулами подстановок), каждая из которых имеет вид либо P → •Q, либо Q → P где P и Q — слова в некотором алфавите, не содержащем знаков • и →. Рассмотрим прежде всего действие отдельной формулы подстановки. Пусть в алфавите А = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, —, +, =} дано слово 12 — 11 = 1 и команда

1 → 2.

Чтобы применить эту команду к данному слову, нужно найти в слове, двигаясь слева направо, первое вхождение левой (до стрелки) части команды и заменить его на правую (после стрелки) часть команды. Ясно, что в результате этого получится слово

22—11=1.

Если мы данную команду применим к этому слову, то получим:

22—21=1.

Следующие применения дадут:

22—22=1,

22—22=2.

Пытаясь применить команду в пятый раз, мы обнаружим, что в слове нет уже «подслова», совпадающего с левой частью команды. Команда, таким образом, перестанет срабатывать, и процесс применения данной формулы подстановки оборвется.

По существу, мы рассмотрели пример нормального алгорифма—алгорифма, состоящего из единственной команды. Если бы команда была не одна, то пользование алгорифмом не стало бы сложнее: в случае, когда самая верхняя команда не срабатывает, надо переходить к следующей команде; если и она не сработает, к следующей, и т. д. После срабатывания некоторой команды происходит возврат к самой верхней команде и ее проверка на применимость к полученному только-что слову и т. д. Если в ходе этого процесса встретится команда, содержащая после стрелки точку, процесс останавливается и слово, полученное в результате применения этой команды (называемой заключительной), объявляется результатом работы алгорифма.

Может случиться, что на каком-то такте работы алгорифма ни одна из формул подстановок (ни одна из команд) не окажется применимой. Тогда произойдет естественный обрыв процесса переработки слов, и слово, при этом полученное, считается результатом. Если же в процессе применения алгорифма к некоторому слову не происходит ни естественного обрыва процесса, ни применения заключительной формулы подстановки—то есть если процесс переработки исходного слова продолжается неограниченно долго, то считается, что алгорифм к этому слову не применим.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Жар холодных числ и пафос бесстрастной логики»

Представляем Вашему вниманию похожие книги на «Жар холодных числ и пафос бесстрастной логики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Жар холодных числ и пафос бесстрастной логики»

Обсуждение, отзывы о книге «Жар холодных числ и пафос бесстрастной логики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x