Борис Бирюков - Жар холодных числ и пафос бесстрастной логики

Здесь есть возможность читать онлайн «Борис Бирюков - Жар холодных числ и пафос бесстрастной логики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1977, Издательство: Издательство Знание, Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Жар холодных числ и пафос бесстрастной логики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Жар холодных числ и пафос бесстрастной логики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.

Жар холодных числ и пафос бесстрастной логики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Жар холодных числ и пафос бесстрастной логики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

C1 X X C2

C1 | П C1

C2 X Л C2

C2 | | C1

Убедимся, что данная программа имитирует поведение нашей кошки. На ленте написана единственная палочка (остальные ячейки пусты); эту палочку воспринимает машина, находящаяся в состоянии С1. В соответствии со второй командой считывающе-записывающая головка машины сделает движение по ленте вправо (кошка залезет на сосну) и останется в том же состоянии (кошка еще не испугалась). Второй такт работы машины определит первая команда:

воспринимая символ х, машина, сохраняя этот символ в обозреваемой ячейке (кошка остается на верхушке сосны), переходит в состояние С2 (кошка пугается высоты). Воспринимая в состоянии С2 символ X, машина приведет в движение свою считывающее-записывающую головку, которая сдвинется влево по ленте на одну ячейку (кошка, воздействуя на барабанные перепонки людей, добивается того, что ее перемещают вниз); это описывается третьей из четверок списка. Последняя команда показывает, что, обозревая символ | в состоянии С2, машина переходит в состояние C1 (увидя привычную обстановку, кошка успокаивается). Дальше опять сработает вторая команда, и процесс начнет повторяться. Машина Тьюринга будет работать неограниченно долго.

Вернемся к вопросу: не шире ли круг действий, осуществляемых машинами Тьюринга, чем круг действий, подведомственных рекурсивным функциям? Оказывается, нет — это доказано совершенно строго, методами, не вызывающими сомнений. То обстоятельство, что рекурсивные функции имеют дело только с числами, а машины Тьюринга — с произвольным алфавитом, содержащим сколь угодно большое (но обязательно конечное) число символов, не имеет существенного значения, поскольку символы можно занумеровать, то есть превратить в числа.

Наконец, рассмотрим еще один подход к понятию вычислимости, разработанный А. А. Марковым. Ведущий отечественный «математический конструктивиста поставил перед собой вопрос: к каким элементарным и математически точно определимым операциям можно было бы свести все процедуры, широко применяющиеся в математике и других науках и носящие название процессов, задаваемых алгоритмами? Известно, что математика прямо-таки изобилует алгоритмами — четкими предписаниями о подлежащих выполнению действиях. Но задача состояла в нахождении общего определения алгоритма (алгорифма) — определения, под которое подпадали бы не только все известные алгоритмы, но и те, которые появятся в будущем. Искомое точное определение алгоритма должно было соответствовать содержательно-интуитивному пониманию алгоритмов в математике: алгоритм — это «точное предписание, определяющее вычислительный процесс, ведущий от варьируемых исходных данных к искомому результату» [12]. Для построения такого определения необходимо было найти «атомы», из которых можно сформировать любое предписание — общепонятное, ясное, однозначно понимаемое. Задача эта была очень важна. Вот как раскрывает ее особую роль известный отечественный специалист по философским проблемам математики С. А. Яновская (1896—1966).

«Начиная с глубокой древности математики строили алгоритмы ... для решения целых классов задач определенного рода. Таковы, например: всем известный алгоритм Эвклида, представляющий собой программу действий, которые нужно выполнить, чтобы, имея любые два целых числа aи b, отыскать их общий наибольший делитель; алгоритм Штурма, позволяющий по заданию коэффициентов многочлена отделить его корни; многие другие алгоритмы алгебры, теории чисел, дифференциальных уравнений и многие, многие другие.

Когда какой-нибудь алгоритм отыскан, то всем ясно что он уже есть: его существование не приходится доказывать.

Но если алгоритм упорно ищут и не находят, то естественно возникает вопрос, возможен ли он вообще? Разве обязательно должен существовать единый прием, позволяющий механически решить (по одной и той же программе) любую из всего класса задач, отличающихся друг от друга значениями каких-либо параметров? Но как доказать несуществование алгоритма, его принципиальную невозможность?

Для этого нужно знать, что, собственно, ищут; нужно иметь четкое определение алгоритма, позволяющее оперировать с этим понятием, как с математическим объектом» [13].

Значимость этой задачи для математики явственно видна на следующем важном примере. Среди двадцати трех проблем, поставленных Гильбертом в докладе «Математические проблемы» на Втором Международном конгрессе математиков в Париже (август 1900 г.), были и такие, которые впоследствии получили отрицательное решение. В частности, такой была десятая по номеру проблема. Приводим ее в формулировке самого Гильберта:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Жар холодных числ и пафос бесстрастной логики»

Представляем Вашему вниманию похожие книги на «Жар холодных числ и пафос бесстрастной логики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Жар холодных числ и пафос бесстрастной логики»

Обсуждение, отзывы о книге «Жар холодных числ и пафос бесстрастной логики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x