Антонио Дуран - Истина в пределе. Анализ бесконечно малых

Здесь есть возможность читать онлайн «Антонио Дуран - Истина в пределе. Анализ бесконечно малых» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2014, ISBN: 2014, Издательство: Де Агостини, Жанр: Математика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Истина в пределе. Анализ бесконечно малых: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Истина в пределе. Анализ бесконечно малых»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Бесконечно малая величина — это числовая функция или последовательность, которая стремится к нулю. Исчисление бесконечно малых — общее понятие для дифференциальных и интегральных исчислений, составляющих основу современной высшей математики. Анализ бесконечно малых — вне всяких сомнений, наиболее мощное и эффективное средство изучения природы, когда-либо созданное учеными. Становление этого понятия связано с именами блистательных математиков: Архимеда, Исаака Ньютона, Готфрида Вильгельма Лейбница, Огюстена Луи Коши и Карла Вейерштрасса. В этой книге идет речь об анализе бесконечно малых и его удивительной истории.

Истина в пределе. Анализ бесконечно малых — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Истина в пределе. Анализ бесконечно малых», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Производная функции f в точке а показывает, как изменится функция в этой точке по сравнению с тем, как изменяется значение переменной. Рассмотрим две функции из прошлых примеров: s(t) = √t и v(t) = t 2. При t = 1 обе эти функции принимают значение 1: s(l) = 1 и v(1) = 1. Однако из таблицы значений видно, что поведение функций вблизи t = 1 существенно различается:

t — s(t)v(t)
0,8 — 0,8944… — 0,64
0,9 — 0,9486… — 0,81
1 — 1 — 1
1,1 — 1,0488… — 1,21
1,2 — 1,0954… — 1,44

Заметьте, что функция v вблизи 1 изменяется более резко, чем функция s.

Чтобы измерить эти изменения, то есть чтобы определить производную, выберем произвольное число а и близкое к нему число a + h. Рассмотрим, как изменяется значение функции в этих точках по сравнению с изменением значения переменной. Для этого разделим разность значений функции f(a + h) — f(а) на разность значений переменных, а + h — a = h. Искомая дробь будет иметь вид:

(f(a+h) — f(a))/h

Продолжим рассматривать функции s(t) = √t и v(t) = t 2 . Вычислим значения этой дроби для а = 1:

Наибольшее значение этой дроби для функции v приближается к 2 для функции s - фото 1

Наибольшее значение этой дроби для функции v приближается к 2, для функции s оно примерно равно 0,5. Это указывает на все тот же факт, который можно видеть из предыдущей таблицы: функция v вблизи точки 1 изменяется быстрее, чем функция s. Нас особенно интересует значение дроби

(f(a+h)-f(a))/ h

при h = 0, то есть когда числа а + h и а совпадают. Это значение мы назовем производной функции f в точке а. Будем обозначать его f’(а). Это обозначение ввел французский математик Жозеф Луи Лагранж (1736—1813) (см. главу 6). Как можно видеть, значение этой дроби равно 0/0, то есть оно не определено.

Однако это лишь кажущаяся неопределенность, поскольку, как показано в предыдущей таблице, для наших функций s(t) = √t и v(t) = t 2 при малых значениях h, отличных от нуля, обе дроби

(s(l+h)-s(l))/h и (v(1+h) –v(1))/h

определены и равны соответственно 0,5 для функции s(t) = √t и 2 — для функции v(t) = t 2. Далее мы покажем, что эти значения действительно соответствуют значениям производных обеих функций в точке 1, то есть s’(l) = 0,5 и v’(l) = 2.

Деление ноля на ноль, возникающее при определении производной, представляло трудность для ученых XVII века и их предшественников всякий раз, когда они пытались рассчитать, например, угол наклона касательной к кривой или мгновенную скорость движения тела, зная пройденный им путь.

Бесконечность, основа анализа бесконечно малых, скрывается именно в этой операции деления ноля на ноль. Как мы только что сказали, нас интересует значение дроби

(f(a+h)-f(a))/ h

при h = 0, когда и числитель, и знаменатель обращаются в ноль. Подобные величины, равные нулю, отношение которых необходимо найти, математики XVII века назвали бесконечно малыми.

Анализ бесконечно малых, созданный Ньютоном и Лейбницем и усовершенствованный Леонардом Эйлером (1707—1783) и другими математиками XVIII века, можно назвать искусством манипулирования бесконечно малыми величинами. Как рассказывается в следующих главах, парадоксально, но ни один из этих гениальных математиков не определил сколько-нибудь точно понятие бесконечно малой величины, которое легло в основу математического анализа.

Ньютону и Лейбницу удалось завершить работу множества их коллег — математиков XVII века и создать анализ бесконечно малых, одним из разделов которого является дифференциальное исчисление. Ньютон и Лейбниц определили простые правила, позволявшие устранять неопределенность, которая заключается в делении ноля на ноль и возникает всякий раз, когда мы хотим вычислить производную функции. Это были правила вычисления производных элементарных функций, в частности степенной:

(x n)′ = nx n-1 ;

тригонометрических функций:

(sin х)= cos х, (cos x) ′ = -sin х;

логарифмов:

(log x)′ = 1/х

показательных функций:

(e x)′ = е x

а также правила вычисления производной для основных операции с функциями, в частности суммы:

(f+g)′ = f′ + g′;

произведения:

(fg)′ = f′g + fg′;

деления:

(f/g)’ = (f’g – fg’)/g 2

и для сложных функций:

(f(g))’ = f’(g)∙g’.

Гордиевым узлом анализа бесконечно малых на протяжении XVII, XVIII и начала XIX века оставалось четкое определение того, как следует понимать значение дроби

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Истина в пределе. Анализ бесконечно малых»

Представляем Вашему вниманию похожие книги на «Истина в пределе. Анализ бесконечно малых» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Истина в пределе. Анализ бесконечно малых»

Обсуждение, отзывы о книге «Истина в пределе. Анализ бесконечно малых» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x