В реальности 408 283 обвиняемых были освобождены из-под ареста еще до суда. Любой из них запросто мог сбежать или совершить новое противоправное деяние — стало быть, мы оказываемся в выгодном положении, так как знаем, чем дело кончилось, и можем сравнить точность рассчитанных прогнозов и судейских решений. Нам доподлинно известно, кто впоследствии не явился в суд (15,2 %) и кого арестовали вновь за повторное правонарушение в период освобождения под залог (25,8 %).
К сожалению ученых, в то время судьи не удовлетворяли ходатайство об освобождении под залог, если обвиняемый не заслуживал доверия, поэтому для тех, кто остался под арестом до суда, не удалось на практике проверить, было ли постановление суда справедливым. Это несколько осложняло исследование. Невозможно было дать объективную количественную оценку точности решений суда в целом. Если нет фактов, которые подтвердили бы или опровергли прогноз поведения этих арестованных, нельзя точно определить и общую погрешность результатов эксперимента. В таком случае остается только предполагать, как повели бы себя эти люди, если бы их освободили под залог [106], и сравнительный анализ работы машин и судей можно выполнить только косвенным путем.
Впрочем, не вызывало сомнений, что люди и машины рассудили по-разному. Как показали исследователи, суд не увидел серьезных рисков в поведении тех арестованных, кого алгоритм счел действительно опасными преступниками. Собственно, судьи выпустили почти половину тех заключенных, кого алгоритм записал в группу наибольшего риска.
Но кто же прав? Как показали факты, программа не зря беспокоилась за определенный сегмент. Больше 56 % людей из этой группы не явились в суд, а 62,7 %, выйдя на волю, принялись за старое — и совершили в том числе такие тяжкие преступления, как изнасилование и убийство. Алгоритм все это просчитал.
Авторы эксперимента утверждали, что их алгоритм по своим возможностям превосходит живых судей при любых вариантах его применения. Их вывод подкрепляется цифрами. Если ваша цель — сократить численность арестованных, содержащихся под стражей до суда, алгоритм отправит за решетку на 41,8 % обвиняемых меньше при тех же показателях преступности. А если процент выпущенных под залог вас устраивает, тоже хорошо — тогда алгоритм поможет снизить долю нарушений условий залога на 24,7 % просто за счет более обоснованного отбора тех, кого можно освободить.
Это не просто теоретические рассуждения. В Род-Айленде подобные программы используются судами в течение восьми последних лет, и загруженность тюрем сократилась на 17 %, а частота рецидивов преступлений — на 6 %. А это сотни человек из группы низкого риска, которых нет нужды лишать свободы, и сотни несовершённых преступлений. К тому же, если учесть, что в Великобритании содержание одного заключенного под стражей обходится казне в 30 000 фунтов в год [107]— а в США год заключения в тюрьме строгого режима может стоить намного дороже, чем обучение в Гарварде [108], — экономятся огромные суммы денег налогоплательщиков. Это победа — и выигрывают все.
В самом деле? Найти Дарта Вейдера
Конечно, ни один алгоритм не может абсолютно безошибочно предсказать действия любого человека. Люди слишком безалаберны, непоследовательны и эмоциональны, для того чтобы уверенно прогнозировать их ближайшее будущее. Компьютер дает более точные прогнозы, но может и ошибиться. Вопрос в том, что станется со всеми теми гражданами, для кого неверно оценили потенциальные риски.
Ошибки алгоритмов можно разделить на две категории. Ричард Берк, профессор криминологии и статистики из Пенсильванского университета, первопроходец в области прогнозирования рецидивной преступности, предложил эффектный способ описания таких ошибок.
“Бывают хорошие парни и плохие, — объяснил он мне. — Фактически алгоритм решает, кто Дарт Вейдер, а кто Люк Скайуокер”.
Одна из возможных ошибок — освободить из-под ареста Дарта Вейдера, то есть дать ложноотрицательный прогноз. Это происходит тогда, когда вы не сумели разглядеть в личности человека потенциальную опасность.
С другой стороны, если оставить в заключении Люка Скайуокера, это будет ложноположительный прогноз. Так бывает, когда алгоритм ошибочно включает человека в группу высокого риска.
Ошибки этих двух типов — ложноположительная и ложноотрицательная оценки — характерны не только для сферы — рецидивной преступности. В нашей книге мы еще не раз с ними столкнемся. От них не застрахован ни один алгоритм, предназначенный для классификации.
Читать дальше
Конец ознакомительного отрывка
Купить книгу