Оставим Эйнштейна в Принстоне и вернемся назад, чтобы рассказать — хотя в очень общих чертах — о выдающихся успехах, достигнутых в это время в атомной теории.
Как мы знаем, еще работая в Бюро патентов, Эйнштейн применил революционную идею Планка о квантах к теории света и к теории теплового движения молекул в твердых телах. На Сольвеевском конгрессе 1911 г. стало ясно — в основном благодаря работе Эйнштейна о теплоте, — что к квантам следует отнестись со всей серьезностью. Вполне очевидным стало и другое: отныне в физике мало что останется ясным. Идея квантов явно противоречила и теории Ньютона, и теории Максвелла; и не видно было никакого способа примирить новое со старым. Наука оказалась в глубоком кризисе — более глубоком, чем представлялось тогда.
Среди немногих избранных, принимавших участие в Сольвеевском конгрессе 1911 г. в Брюсселе, был уроженец Новой Зеландии Эрнест Резерфорд, признанный во всем мире ведущим специалистом по атомной физике. В то время он был уже лауреатом Нобелевской премии, которую получил за проведенные в Канаде исследования природы радиоактивности. Теперь он работал в Англии, где собрал вокруг себя в Манчестерском университете плеяду выдающихся исследователей. Будучи сам первооткрывателем в науке, Резерфорд получил истинное удовольствие от дискуссий о квантах, которые буквально раздирали участников конгресса, и по возвращении в Манчестер в таких ярких красках передал содержание этих споров молодому датскому физику Нильсу Бору, что этот рассказ запомнился Бору до конца его дней.
Несколько раньше, в том же 1911 г., Резерфорд представил на обсуждение физиков идею о том, что атом, наподобие миниатюрной солнечной системы, которую, однако, скрепляют электрические, а не гравитационные силы, состоит из крохотного ядра, имеющего относительно большую массу, и окружающих его планетарных электронов. Ставшее роковым открытие атомного ядра было блестящим образом обосновано экспериментально. Но предложенная Резерфордом модель атома имела существенный недостаток: в соответствии с теорией Максвелла она неизбежно распалась бы, ибо электроны не смогли бы оставаться на постоянных орбитах. Они должны были бы излучать энергию в виде электромагнитных волн и по спирали врезаться в ядро. Никак нельзя было рассчитывать на то, что они останутся устойчивыми и дадут четкие спектральные линии, видимые в спектроскоп.
Положение спас вернувшийся в 1913 г. в Данию Нильс Бор. Эйнштейн к тому времени уже бросил Максвеллу вызов. Бор решил продолжить это сражение тем же оружием — квантами и дерзостью научной мысли. Главной задачей Бора было теоретически доказать, что атом Резерфорда не распадется. Представьте себе жалюзи. Если опустить их до определенной высоты, жалюзи останутся растянутыми. Особенность их устройства — прерывистость — мешает им снова свернуться в плотный рулон. В 1900 г. Планк ввел понятие квантовой прерывистости для определенных видов колебаний, представив допустимые количества энергии наподобие последовательности ступеней, а не гладкого скользкого склона. Эйнштейн быстро осознал перспективность и универсальное значение дискретности квантового излучения и, разработав теорию тепловых колебаний атомов в твердом теле, распространил эту идею в 1906 г. на другие виды колебаний. И наконец, в начале 1913 г. Бор перенес эту дискретность на атом Резерфорда, чтобы спасти его от разрушения.
Наперекор максвелловским правилам Бор решительно заявил, что электроны не только должны оставаться на постоянных орбитах, но и не будут при этом испускать излучение. Следуя далее своим еретическим путем, он допустил, что могут существовать не какие угодно орбиты, а только специальные. В результате этих властных эдиктов получился атом Резерфорда, но уже обладающий некоторой дискретностью. Пожалуй, даже предостаточной, ибо возникал вопрос: каким же образом атом все-таки излучает радиацию? Бор знал ответ на этот вопрос. Он заявил, что свет испускается или поглощается не тогда, когда электрон находится на орбите, а когда он совершает квантовый скачок с одной разрешенной орбиты на другую. Кроме того, он утверждал, что квантовое правило Планка связывает частоту света с изменением энергии электрона, причем соотношение изменение энергии/частота равно постоянной Планка h . Бор показал также, каким образом из введенных им положений, имевших более конкретную математическую форму, вытекают результаты, дающие весьма удовлетворительное сочетание с экспериментальными данными. И самое главное — хотя это могло быть осознано далеко не сразу: отказавшись от описания того, что происходит при квантовом переходе электрона, он проявил безошибочную интуицию.
Читать дальше