Чтобы уменьшить силы внутреннего трения в пограничном слое, крыльям и фюзеляжу самолета придают хорошо обтекаемую форму и полируют их поверхность.
Итак, лобовая аэродинамическая сила только тормозит движение тела. Посмотрим теперь, как возникает сила, нужная для полета.
Она появляется в тех случаях, когда воздух обтекает пластину (крыло) несимметрично.
На рис. 12 изображена схема обтекания прямоугольной пластины, поставленной под острым углом к потоку.
Рис. 12. Возникновение аэродинамической силы Р при несимметричном обтекании пластины и замена силы Р двумя аэродинамическими силами — подъемной силой П и силой лобового сопротивления Л.
Под пластиной происходит торможение потока, и поэтому давление здесь повышается. Над пластиной вследствие срыва струй получается разрежение воздуха, то есть давление здесь понижено. Благодаря этой разности давлений и возникает аэродинамическая сила. Она направлена в сторону меньшего давления, то есть назад и вверх.
Отклонение аэродинамической силы вверх зависит от угла, под которым пластина поставлена к потоку. Этот угол получил очень удачное название «угла атаки». Под этим углом пластина как бы «атакует» воздух (этот угол принято обозначать греческой буквой α — альфа).
Таким образом, воздушный поток стремится здесь отнести пластину не только назад, но одновременно и вверх.
Поэтому для наглядности мы можем здесь заменить полную аэродинамическую силу Р двумя силами — Л и П, из которых первая направлена прямо назад (сила лобового сопротивления), а вторая направлена вертикально вверх (подъемная сила) [11] Такая замена называется разложением одной силы на две по правилу параллелограмма.
.
Возникновение аэродинамических сил при несимметричном обтекании можно хорошо видеть у воздушного змея, сделанного, например, из листа бумаги с двумя диагональными рейками и одной поперечной.
Если уздечку змея, к которой прикрепляется леер (нить, на которой запускают змей), построить из ниток равной длины, прикрепленных к концам диагональных реек, то змей летать не будет. Побежав с таким змеем против ветра (рис. 13 внизу), вы увидите, что змей будет нестись на высоте вашей руки, стоя в воздухе перпендикулярно к ветру.
Рис. 13. Полет воздушного змея: внизу — с неправильно построенной уздечкой, вверху — с правильно построенной уздечкой.
Такая замена называется разложением одной силы на две по правилу параллелограмма.
По натяжению леера вы будете чувствовать, что змей сопротивляется движению, но и только. Это и понятно, так как в этом случае аэродинамическая сила будет только лобовой.
Но если вы сделаете уздечку так, что две верхние нитки будут равной длины, а третья (нижняя) чуть покороче, и прикрепите ее к центру змея, то змей, при наличии правильно сделанного хвоста, легко взмоет и будет устойчиво летать (рис. 13 вверху). В этом случае змей «атакует» воздух под углом 40–60 градусов и в результате несимметричного обтекания возникает подъемная сила.
Подъемная сила крыла самолета, как мы сейчас увидим, возникает, однако, несколько иначе, чем подъемная сила пластины, или воздушного змея.
КАК ВОЗНИКАЕТ ПОДЪЕМНАЯ СИЛА КРЫЛА САМОЛЕТА
И изобретатели первых летательных машин строили крылья в виде плоских или немного изогнутых поверхностей. Позже выяснилось, что выгоднее придавать крылу самолета обтекаемую форму — такую, какая в поперечном сечении изображена на рис. 14, а.
Рис. 14. Различные формы крыла самолета: а) профиль крыла, линия ЛБ — хорда профиля, б) вид крыла сверху.
Это сечение называется профилем крыла.
Существует много профилей крыльев. На нашем рисунке изображены наиболее типичные. Линия АБ, соединяющая носок и хвостик профиля, называется его хордой.
Вид крыла сверху тоже бывает различным, но чаще конструкторы применяют только три формы: прямоугольную, трапециевидную и стреловидную (рис. 14, б). Концы прямоугольных и трапециевидных крыльев обычно закругляются.
При выборе формы крыла и его профиля конструктор руководствуется их аэродинамической выгодностью. Крыло работает выгодно, когда оно развивает большую подъемную силу, но дает малое лобовое сопротивление.
Читать дальше