Виктор Вайскопф - Наука и удивительное [Как человек понимает природу]

Здесь есть возможность читать онлайн «Виктор Вайскопф - Наука и удивительное [Как человек понимает природу]» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1965, Издательство: Наука, Жанр: История, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Наука и удивительное [Как человек понимает природу]: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Наука и удивительное [Как человек понимает природу]»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В этой небольшой книге автор так осветил все основные разделы современного естествознания, чтобы их понял читатель, лишенный всякой специальной подготовки. Благодаря упрощениям автора, основанным на знании конкретной взаимосвязи всех явлений природы, читатель легко поймет содержание книги. Цель книги состоит в том, чтобы дать общий беглый очерк современных научных представлений о явлениях природы, показать универсальность этих представлений и их значение для человека.

Наука и удивительное [Как человек понимает природу] — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Наука и удивительное [Как человек понимает природу]», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Этот результат имеет фундаментальное значение.

Он дает связь между волновой природой электрона и существованием дискретных состояний в атоме. Здесь мы коснулись самого существа природы. Если электрон может двигаться только в ограниченном пространстве вблизи ядра, то его волновые свойства разрешают лишь вполне определенные, заданные формы движения. Поэтому атом не может изменять свое состояние непрерывно, он должен переходить скачком из одного разрешенного состояния в другое.

Атом будет оставаться в состоянии с наименьшей энергией до тех пор, пока он не получит достаточно энергии, чтобы подняться в следующее состояние, как это и наблюдалось в опытах Франка и Герца.

Успех электронно-волновой модели атома особенно замечателен тем, что она позволяет количественно объяснить все детали наблюдаемых фактов. Шредингер сначала решил простейшую задачу о водородном атоме, в котором к ядру «привязан» только один электрон. Он получил ряд колебательных состояний, во всех отношениях отвечающих наблюдаемым квантовым состояниям водородного атома. В частности, частоты колебаний электронной волны в точности соответствуют энергиям квантовых состояний, если воспользоваться при этом знаменитой формулой Планка, связывающей энергию с частотой. Соответствующая энергия Е всегда равна частоте ω (омега), умноженной на постоянное число h , т. е. Е — hω . Число h — это так называемая постоянная Планка [34] h — очень малое число. Если измерять энергию в электроновольтах, а частоту — числом колебаний в секунду, то h = 4·10 -15 . Колебания с частотой 10 15 в секунду соответствуют энергии 4 эв . .

Точность результатов, вытекающих из этого соотношения, почти неправдоподобна! Шредингер вычислил частоты колебаний электронной волны, ограниченной притяжением. Он умножил эти частоты на постоянную Планка и получил — с точностью до последнего десятичного знака — энергии квантовых состояний водорода, разрешенные значения энергетического «банковского счета» водородного атома [35] Каждый, кто знакомится с этим фантастическим открытием, согласится со знаменитым итальянским физиком Энрико Ферми, который в своих лекциях восклицал по этому поводу: «Нет необходимости согласоваться так хорошо!» . Очевидно, что волновая природа электрона должна служить решающим фактором для понимания свойств атома.

Ограничение электронных волн в пространстве обусловливает существование ряда разрешенных состояний и предписанных частот. Если вспомнить соотношение между частотой и энергией, то мы получим ряд состояний с разрешенной энергией. Состояние с наименьшей частотой является важнейшим, потому что оно обладает наименьшей энергией; это нормальное состояние атома. В таком состоянии волновая природа проявляется наиболее отчетливым образом. Ограниченные в пространстве электронные волны в атомах нельзя наблюдать непосредственно. Можно измерить их длину, частоты (точнее, разности между частотами, определяемые как разности энергий) и другие косвенные параметры. Но весьма поучительно видеть изображения электронных волновых картин. Это не фотографии, снять их, как мы дальше увидим, невозможно, а модели, построенные на основании вычислений. На фото V показаны картины электронных волн, или электронные конфигурации, расположенные в порядке возрастания частоты или энергии, для последовательных квантовых состояний электрона, движение которого ограничено притяжением к ядру. Самое низшее, или основное, состояние является вместе с тем и самым простым: чем выше частота, тем сложнее картина. Основное состояние сферически симметрично. Следующие состояния имеют вид «восьмерки». Более высокие состояния обычно имеют более сложный вид, хотя среди них встречаются и относительно простые.

Эти картины чрезвычайно важны как фундаментальные формы по которым строится - фото 35

Эти картины чрезвычайно важны, как фундаментальные формы, по которым строится вещество. Это формы, и притом единственно возможные, которые может принимать «движение» электрона в условиях, господствующих в атоме, т. е. под влиянием центральной силы (притяжение к ядру), связывающей электрон. Следовательно, подобные картины символизируют способ, которым природа связывает все нас окружающее и придает ему форму.

Картины на фото V и присущая им симметрия определяют поведение атомов, на них основано упорядоченное расположение атомов в молекулах и симметричное расположение их в кристаллах. Совершенство кристаллов отражает в большем масштабе фундаментальные формы атомных картин. В конечном счете все закономерности формы и строения, которые мы видим в природе, начиная от гексагональной симметрии снежинок и до сложной симметрии живых форм в цветах и животных, основаны на симметрии атомных картин.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Наука и удивительное [Как человек понимает природу]»

Представляем Вашему вниманию похожие книги на «Наука и удивительное [Как человек понимает природу]» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Наука и удивительное [Как человек понимает природу]»

Обсуждение, отзывы о книге «Наука и удивительное [Как человек понимает природу]» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x