Deep Blue was given a head start by its creators, who preprogrammed it not only with the basic rules of chess, but also with detailed instructions regarding chess strategies. A new generation of AI uses machine learning to do even more remarkable and elegant things. In February 2015 a program developed by Google DeepMind learned by itself how to play forty-nine classic Atari games. One of the developers, Dr Demis Hassabis, explained that ‘the only information we gave the system was the raw pixels on the screen and the idea that it had to get a high score. And everything else it had to figure out by itself.’ The program managed to learn the rules of all the games it was presented with, from Pac-Man and Space Invaders to car racing and tennis games. It then played most of them as well as or better than humans, sometimes coming up with strategies that never occur to human players. 13

Deep Blue defeating Garry Kasparov.
© STAN HONDA/AFP/Getty Images.
Computer algorithms have recently proven their worth in ball games, too. For many decades, baseball teams used the wisdom, experience and gut instincts of professional scouts and managers to pick players. The best players fetched millions of dollars, and naturally enough the rich teams got the cream of the market, whereas poorer teams had to settle for the scraps. In 2002 Billy Beane, the manager of the low-budget Oakland Athletics, decided to beat the system. He relied on an arcane computer algorithm developed by economists and computer geeks to create a winning team from players that human scouts overlooked or undervalued. The old-timers were incensed by Beane’s algorithm transgressing into the hallowed halls of baseball. They said that picking baseball players is an art, and that only humans with an intimate and long-standing experience of the game can master it. A computer program could never do it, because it could never decipher the secrets and the spirit of baseball.
They soon had to eat their baseball caps. Beane’s shoestring-budget algorithmic team ($44 million) not only held its own against baseball giants such as the New York Yankees ($125 million), but became the first team ever in American League baseball to win twenty consecutive games. Not that Beane and Oakland could enjoy their success for long. Soon enough, many other baseball teams adopted the same algorithmic approach, and since the Yankees and Red Sox could pay far more for both baseball players and computer software, low-budget teams such as the Oakland Athletics now had an even smaller chance of beating the system than before. 14
In 2004 Professor Frank Levy from MIT and Professor Richard Murnane from Harvard published a thorough research of the job market, listing those professions most likely to undergo automation. Truck drivers were given as an example of a job that could not possibly be automated in the foreseeable future. It is hard to imagine, they wrote, that algorithms could safely drive trucks on a busy road. A mere ten years later, Google and Tesla not only imagine this, but are actually making it happen. 15
In fact, as time goes by, it becomes easier and easier to replace humans with computer algorithms, not merely because the algorithms are getting smarter, but also because humans are professionalising. Ancient hunter-gatherers mastered a very wide variety of skills in order to survive, which is why it would be immensely difficult to design a robotic hunter-gatherer. Such a robot would have to know how to prepare spear points from flint stones, how to find edible mushrooms in a forest, how to use medicinal herbs to bandage a wound, how to track down a mammoth and how to coordinate a charge with a dozen other hunters. However, over the last few thousand years we humans have been specialising. A taxi driver or a cardiologist specialises in a much narrower niche than a hunter-gatherer, which makes it easier to replace them with AI.
Even the managers in charge of all these activities can be replaced. Thanks to its powerful algorithms, Uber can manage millions of taxi drivers with only a handful of humans. Most of the commands are given by the algorithms without any need of human supervision. 16In May 2014 Deep Knowledge Ventures – a Hong Kong venture-capital firm specialising in regenerative medicine – broke new ground by appointing an algorithm called VITAL to its board. VITAL makes investment recommendations by analysing huge amounts of data on the financial situation, clinical trials and intellectual property of prospective companies. Like the other five board members, the algorithm gets to vote on whether the firm makes an investment in a specific company or not.
Examining VITAL’s record so far, it seems that it has already picked up one managerial vice: nepotism. It has recommended investing in companies that grant algorithms more authority. With VITAL’s blessing, Deep Knowledge Ventures has recently invested in Silico Medicine, which develops computer-assisted methods for drug research, and in Pathway Pharmaceuticals, which employs a platform called OncoFinder to select and rate personalised cancer therapies. 17
As algorithms push humans out of the job market, wealth might become concentrated in the hands of the tiny elite that owns the all-powerful algorithms, creating unprecedented social inequality. Alternatively, the algorithms might not only manage businesses, but actually come to own them. At present, human law already recognises intersubjective entities like corporations and nations as ‘legal persons’. Though Toyota or Argentina has neither a body nor a mind, they are subject to international laws, they can own land and money, and they can sue and be sued in court. We might soon grant similar status to algorithms. An algorithm could then own a venture-capital fund without having to obey the wishes of any human master.
If the algorithm makes the right decisions, it could accumulate a fortune, which it could then invest as it sees fit, perhaps buying your house and becoming your landlord. If you infringe on the algorithm’s legal rights – say, by not paying rent – the algorithm could hire lawyers and sue you in court. If such algorithms consistently outperform human fund managers, we might end up with an algorithmic upper class owning most of our planet. This may sound impossible, but before dismissing the idea, remember that most of our planet is already legally owned by non-human inter-subjective entities, namely nations and corporations. Indeed, 5,000 years ago much of Sumer was owned by imaginary gods such as Enki and Inanna. If gods can possess land and employ people, why not algorithms?
So what will people do? Art is often said to provide us with our ultimate (and uniquely human) sanctuary. In a world where computers replace doctors, drivers, teachers and even landlords, everyone would become an artist. Yet it is hard to see why artistic creation will be safe from the algorithms. Why are we so sure computers will be unable to better us in the composition of music? According to the life sciences, art is not the product of some enchanted spirit or metaphysical soul, but rather of organic algorithms recognising mathematical patterns. If so, there is no reason why non-organic algorithms couldn’t master it.
David Cope is a musicology professor at the University of California in Santa Cruz. He is also one of the more controversial figures in the world of classical music. Cope has written programs that compose concertos, chorales, symphonies and operas. His first creation was named EMI (Experiments in Musical Intelligence), which specialised in imitating the style of Johann Sebastian Bach. It took seven years to create the program, but once the work was done, EMI composed 5,000 chorales à la Bach in a single day. Cope arranged a performance of a few select chorales in a music festival at Santa Cruz. Enthusiastic members of the audience praised the wonderful performance, and explained excitedly how the music touched their innermost being. They didn’t know it was composed by EMI rather than Bach, and when the truth was revealed, some reacted with glum silence, while others shouted in anger.
Читать дальше
Конец ознакомительного отрывка
Купить книгу