EMI continued to improve, and learned to imitate Beethoven, Chopin, Rachmaninov and Stravinsky. Cope got EMI a contract, and its first album – Classical Music Composed by Computer – sold surprisingly well. Publicity brought increasing hostility from classical-music buffs. Professor Steve Larson from the University of Oregon sent Cope a challenge for a musical showdown. Larson suggested that professional pianists play three pieces one after the other: one by Bach, one by EMI, and one by Larson himself. The audience would then be asked to vote who composed which piece. Larson was convinced people would easily tell the difference between soulful human compositions, and the lifeless artefact of a machine. Cope accepted the challenge. On the appointed date, hundreds of lecturers, students and music fans assembled in the University of Oregon’s concert hall. At the end of the performance, a vote was taken. The result? The audience thought that EMI’s piece was genuine Bach, that Bach’s piece was composed by Larson, and that Larson’s piece was produced by a computer.
Critics continued to argue that EMI’s music is technically excellent, but that it lacks something. It is too accurate. It has no depth. It has no soul. Yet when people heard EMI’s compositions without being informed of their provenance, they frequently praised them precisely for their soulfulness and emotional resonance.
Following EMI’s successes, Cope created newer and even more sophisticated programs. His crowning achievement was Annie. Whereas EMI composed music according to predetermined rules, Annie is based on machine learning. Its musical style constantly changes and develops in reaction to new inputs from the outside world. Cope has no idea what Annie is going to compose next. Indeed, Annie does not restrict itself to music composition but also explores other art forms such as haiku poetry. In 2011 Cope published Comes the Fiery Night: 2,000 Haiku by Man and Machine. Of the 2,000 haikus in the book, some are written by Annie, and the rest by organic poets. The book does not disclose which are which. If you think you can tell the difference between human creativity and machine output, you are welcome to test your claim. 18
In the nineteenth century the Industrial Revolution created a huge new class of urban proletariats, and socialism spread because no one else managed to answer their unprecedented needs, hopes and fears. Liberalism eventually defeated socialism only by adopting the best parts of the socialist programme. In the twenty-first century we might witness the creation of a new massive class: people devoid of any economic, political or even artistic value, who contribute nothing to the prosperity, power and glory of society.
In September 2013 two Oxford researchers, Carl Benedikt Frey and Michael A. Osborne, published ‘The Future of Employment’, in which they surveyed the likelihood of different professions being taken over by computer algorithms within the next twenty years. The algorithm developed by Frey and Osborne to do the calculations estimated that 47 per cent of US jobs are at high risk. For example, there is a 99 per cent probability that by 2033 human telemarketers and insurance underwriters will lose their jobs to algorithms. There is a 98 per cent probability that the same will happen to sports referees, 97 per cent that it will happen to cashiers and 96 per cent to chefs. Waiters – 94 per cent. Paralegal assistants – 94 per cent. Tour guides – 91 per cent. Bakers – 89 per cent. Bus drivers – 89 per cent. Construction labourers – 88 per cent. Veterinary assistants – 86 per cent. Security guards – 84 per cent. Sailors – 83 per cent. Bartenders – 77 per cent. Archivists – 76 per cent. Carpenters – 72 per cent. Lifeguards – 67 per cent. And so forth. There are of course some safe jobs. The likelihood that computer algorithms will displace archaeologists by 2033 is only 0.7 per cent, because their job requires highly sophisticated types of pattern recognition, and doesn’t produce huge profits. Hence it is improbable that corporations or government will make the necessary investment to automate archaeology within the next twenty years. 19
Of course, by 2033 many new professions are likely to appear, for example, virtual-world designers. But such professions will probably require much more creativity and flexibility than your run-of-the-mill job, and it is unclear whether forty-year-old cashiers or insurance agents will be able to reinvent themselves as virtual-world designers (just try to imagine a virtual world created by an insurance agent!). And even if they do so, the pace of progress is such that within another decade they might have to reinvent themselves yet again. After all, algorithms might well outperform humans in designing virtual worlds too. The crucial problem isn’t creating new jobs. The crucial problem is creating new jobs that humans perform better than algorithms. 20
The technological bonanza will probably make it feasible to feed and support the useless masses even without any effort on their side. But what will keep them occupied and content? People must do something, or they will go crazy. What will they do all day? One solution might be offered by drugs and computer games. Unnecessary people might spend increasing amounts of time within 3D virtual-reality worlds, which would provide them with far more excitement and emotional engagement than the drab reality outside. Yet such a development would deal a mortal blow to the liberal belief in the sacredness of human life and of human experiences. What’s so sacred in useless bums who pass their days devouring artificial experiences in La La Land?
Some experts and thinkers, such as Nick Bostrom, warn that humankind is unlikely to suffer this degradation, because once artificial intelligence surpasses human intelligence, it might simply exterminate humankind. The AI is likely to do so either for fear that humankind would turn against it and try to pull its plug, or in pursuit of some unfathomable goal of its own. For it would be extremely difficult for humans to control the motivation of a system smarter than themselves.
Even preprogramming the system with seemingly benign goals might backfire horribly. One popular scenario imagines a corporation designing the first artificial super-intelligence, and giving it an innocent test such as calculating pi. Before anyone realises what is happening, the AI takes over the planet, eliminates the human race, launches a conquest campaign to the ends of the galaxy, and transforms the entire known universe into a giant super-computer that for billions upon billions of years calculates pi ever more accurately. After all, this is the divine mission its Creator gave it. 21
A Probability of 87 Per Cent
At the beginning of this chapter we identified several practical threats to liberalism. The first is that humans might become militarily and economically useless. This is just a possibility, of course, not a prophecy. Technical difficulties or political objections might slow down the algorithmic invasion of the job market. Alternatively, since much of the human mind is still uncharted territory, we don’t really know what hidden talents humans might discover, and what novel jobs they might create to replace the losses. That, however, may not be enough to save liberalism. For liberalism believes not just in the value of human beings – it also believes in individualism. The second threat facing liberalism is that in the future, while the system might still need humans, it will not need individuals. Humans will continue to compose music, to teach physics and to invest money, but the system will understand these humans better than they understand themselves, and will make most of the important decisions for them. The system will thereby deprive individuals of their authority and freedom.
Читать дальше
Конец ознакомительного отрывка
Купить книгу